Planta Med 2003; 69(3): 193-201
DOI: 10.1055/s-2003-38494
Review
© Georg Thieme Verlag Stuttgart · New York

Recent Development of Antitumor Agents from Chinese Herbal Medicines. Part II. High Molecular Compounds[3]

Weici Tang1 , Ingrid Hemm1 , Barbara Bertram2
  • 1Division of Food Chemistry and Environmental Toxicology, Department of Chemistry, University of Kaiserslautern, Germany
  • 2Division of Toxicology and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany
Further Information

Publication History

Received: May 27, 2002

Accepted: December 22, 2002

Publication Date:
04 April 2003 (online)

Abstract

High molecular compounds from Chinese herbal medicines, including ribosome-inactivating proteins and polysaccharides from both fungi and high plants have been tested for the treatment of malignant diseases. Polysaccharides possessing immunostimulating activities can be used as adjuvants in tumor treatment. The fungi containing such polysaccharides are usually edible mushrooms or tonics in Traditional Chinese Medicine. Parts from high plants such as Radix Astragali and Fructus Lycii containing polysaccharides are mainly used as tonic in Traditional Chinese Medicine. Ribosome-inactivating proteins are a group of proteins exerting cytotoxic activities via inhibition of protein synthesis. Some of the ribosome-inactivating proteins have been used as the cytotoxic part in conjugates with monoclonal antibodies as tumor-targeting drugs. The cytotoxic and antineoplastic mechanisms of the high molecular compounds are rather different from those of the low molecular compounds described in part I.

Dedication

In memory of Prof. Dr. Hans Beyer, Prof. Dr. Roland Pohloudek-Fabini and Prof. Dr. Werner Rothmaler, Ernst-Moritz-Arndt University, Greifswald, Germany

3 Part I. Low Molecular Compounds: Planta Med 2003: 69: 97 - 108

References

  • 1 Kidd P M. The use of mushroom glucans and proteoglycans in cancer treatment.  Altern Med Rev. 2000;  5 4-27
  • 2 Ooi V E, Liu F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes.  Curr Med Chem. 2000;  7 715-29
  • 3 Chihara G, Hamuro J, Maeda Y, Arai Y, Fukuoka F. Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from Lentinus edodes (Berk.) Sing. (an edible mushroom).  Cancer Res. 1970;  30 2776-81
  • 4 Shida M, Ushioda Y, Nakajima T, Matsuda K. Structure of the alkali-insoluble skeletal glucan of Lentinus edodes .  J Biochem (Tokyo). 1981;  90 1093-100
  • 5 Wang G L, Lin Z B. The immunomodulatory effect of lentinan.  Acta Pharm Sin. 1996;  31 86-90
  • 6 Nakano H, Namatame K, Nemoto H, Motohashi H, Nishiyama K, Kumada K. A multi-institutional prospective study of lentinan in advanced gastric cancer patients with unresectable and recurrent diseases: effect on prolongation of survival and improvement of quality of life.  Hepatogastroenterology. 1999;  46 2662-8
  • 7 Takita M, Onda M, Tokunaga A, Shirakawa T, Ikeda K, Hiramoto Y, et al. Successful treatment of hepatic metastasis of gastric cancer with 5′-DFUR and lentinan.  Gan To Kagaku Ryoho. 1998;  28 129-33
  • 8 Mio H, Terabe K. Clinical effects of postoperative immunochemotherapy with a combination of 5-FU, CDDP and lentinan for stage IVb gastric carcinoma and long-term pharmacokinetic studies on CDDP and 5-FU.  Gan To Kagaku Ryoho. 1997;  24 337-42
  • 9 Taguchi T. Clinical efficacy of lentinan on patients with stomach cancer: end point results of a four-year-follow-up survey.  Cancer Detect Prev Suppl. 1987;  1 333-49
  • 10 Takeshita K, Hayashi S, Tani M, Kando F, Saito N, Endo M. Monocyte function associated with intermittent lentinan therapy after resection of gastric cancer.  Surg Oncol. 1996;  5 23-8
  • 11 Arinaga S, Karimine N, Takamuku K, Nanbara S, Nagamatsu M, Ueo H, et al. Enhanced production of interleukin 1 and tumor necrosis factor by peripheral monocytes after lentinan administration in patients with gastric carcinoma.  Int J Immunopharmacol. 1992;  14 43-7
  • 12 Arinaga S, Karimine N, Takamuku K, Nanbara S, Inoue H, Nagamatsu M, et al. Enhanced induction of lymphokine-activated killer activity after lentinan administration in patients with gastric carcinoma.  Int J Immunopharmacol. 1992;  14 535-9
  • 13 Suto T, Fukuda S, Moriya N, Watanabe Y, Sasaki D, Yoshida Y, et al. Clinical study of biological response modifiers as maintenance therapy for hepatocellular carcinoma.  Cancer Chemother Pharmacol. 1994;  33 Suppl 145-8
  • 14 Chihara G. Preclinical evaluation of lentinan in animal models.  Adv Exp Med Biol. 1983;  166 189-97
  • 15 Li J F, Guo J W, Huang X F. Study on the enhancing effect of polyporus polysaccharide, mycobacterium polysaccharide and lentinan on lymphokine-activated killer cell activity in vitro .  Chin J Integr Trad West Med. 1996;  16 224-6
  • 16 Liu F, Ooi V E, Fung M C. Analysis of immunomodulating cytokine mRNAs in the mouse induced by mushroom polysaccharides.  Life Sci. 1999;  64 1005-11
  • 17 Ogawa T, Ohwada S, Sato Y, Izumi M, Nakamura S, Takeyoshi I, et al. Effects of 5′-DFUR and lentinan on cytokines and PyNPase against AH66 ascites hepatoma in rats.  Anticancer Res. 1999;  19A 375-9
  • 18 Murata T, Hatayama I, Kakizaki I, Satoh K, Sato K, Tsuchida S. Lentinan enhances sensitivity of mouse colon 26 tumor to cis-diamminedichloroplatinum (II) and decreases glutathione transferase expression.  Jpn J Cancer Res. 1996;  87 1171-8
  • 19 Haba S, Hamaoka T, Takatsu K, Kitagawa M. Selective suppression of T-cell activity in tumor-bearing mice and its improvement by lentinan, a potent anti-tumor polysaccharide.  Int J Cancer. 1976;  18 93-104
  • 20 Suzuki M, Takatsuki F, Maeda Y Y, Hamuro J, Chihara G. Antitumor and immunological activity of lentinan in comparison with LPS.  Int J Immunopharmacol. 1994;  16 463-8
  • 21 Mitamura T, Sakamoto S, Suzuki S, Yoshimura S, Maemura M, Kudo H. Effects of lentinan on colorectal carcinogenesis in mice with ulcerative colitis.  Oncol Rep. 2000;  7 599-601
  • 22 Oka M, Hazama S, Suzuki M, Wang F, Wadamori K, Iizuka N, et al. In vitro and in vivo analysis of human leukocyte binding by the antitumor polysaccharide, lentinan.  Int J Immunopharmacol. 1996;  18 211-6
  • 23 Ladanyi A, Timar J, Lapis K. Effect of lentinan on macrophage cytotoxicity against metastatic tumor cells.  Cancer Immunol Immunother. 1993;  36 123-6
  • 24 Jeannin J F, Lagadec P, Pelletier H, Reisser D, Olsson N O, Chihara G, et al. Regression induced by lentinan, of peritoneal carcinomatoses in a model of colon cancer in rat.  Int J Immunopharmacol. 1988;  10 855-61
  • 25 Morinaga H, Tazawa K, Tagoh H, Muraguchi A, Fujimaki M. An in vivo study of hepatic and splenic interleukin-1β mRNA expression following oral PSK or LEM administration.  Jpn J Cancer Res. 1994;  85 1298-303
  • 26 Suzuki M, Kikuchi T, Takatsuki F, Hamuro J. Curative effects of combination therapy with lentinan and interleukin-2 against established murine tumors, and the role of CD8-positive T cells.  Cancer Immunol Immunother. 1994;  38 1-8
  • 27 Moriyuki H, Ichimura M. Acute toxicity of lentinan in mice and rats.  J Toxicol Sci. 1980;  5 Suppl 1-9
  • 28 Tsukagoshi S, Hashimoto Y, Fujii G, Kobayashi H, Nomoto K, Orita K. Krestin (PSK).  Cancer Treat Rev. 1984;  11 131-55
  • 29 Wang H X, NG T B, Liu W K, Ooi V E, Chang S T. Polysaccharide-peptide complexes from the cultured mycelia of the mushroom Coriolus versicolor and their culture medium activate mouse lymphocytes and macrophages.  Int J Biochem Cell Biol. 1996;  28 601-7
  • 30 Maehara Y, Inutsuka S, Takeuchi H, Baba H, Kusumoto H, Sugimachi K. Postoperative PSK and OK-432 immunochemotherapy for patients with gastric cancer.  Cancer Chemother Pharmacol. 1993;  33 (2) 171-5
  • 31 Kobayashi H, Matsunaga K, Fujii M. PSK as a chemopreventive agent.  Cancer Epidemio Biomarkers Prev. 1993;  2 271-6
  • 32 Fujii T, Saito K, Matsunaga K, Oguchi Y, Ikuzawa M, Furusho T, et al. Prolongation of the survival period with the biological response modifier PSK in rats bearing N-methyl-N-nitrosourea-induced mammary gland tumors.  In Vivo. 1995;  9 55-7
  • 33 Kobayashi Y, Kariya K, Saigenji K, Nakamura K. Suppression of cancer cell growth in vitro by the protein-bound polysaccharide of Coriolus versicolor Quel (PSK) with SOD mimicking activity.  Cancer Biother. 1994;  9 63-9
  • 34 Kobayashi Y, Kariya K, Saigenji K, Nakamura K. Enhancement of anti-cancer activity of cisdiaminedichloroplatinum by the protein-bound polysaccharide of Coriolus versicolor Quel (PSK) in vitro .  Cancer Biother. 1994;  9 351-8
  • 35 Sakagami H, Sugaya K, Utsumi A, Fujinaga S, Sato T, Takeda M. Stimulation by PSK of interleukin-1 production by human peripheral blood mononuclear cells.  Anticancer Res. 1993;  13 671-5
  • 36 Kohgo Y, Hirayama Y, Sakamaki S, Matsunaga T, Ohi S, Kuga T, et al. Improved recovery of myelosuppression following chemotherapy in mice by combined administration of PSK and various cytokines.  Acta Haematol. 1994;  92 130-5
  • 37 Kobayashi H, Matsunaga K, Oguchi Y. Antimetastatic effects of PSK (Krestin), a protein-bound polysaccharide obtained from basidiomycetes: an overview.  Cancer Epidemio Biomarkers Prev. 1995;  4 275-81
  • 38 Matsunaga K, Ohhara M, Oguchi Y, Iijima H, Kobayashi H. Antimetastatic effect of PSK, aprotein-bound polysaccharide, against the B16-BL6 mouse melanoma.  Invasion and Metastasis. 1996. 16 27-38
  • 39 Kanoh T, Matsunaga K, Saito K, Fujii T. Suppression of in vivo tumor-induced angiogenesis by the protein-bound polysaccharide PSK.  In Vivo . 1994;  8 247-50
  • 40 Pang Z J, Chen Y, Zhou M, Wan J. Effect of polysaccharide krestin on glutathione peroxidase gene expression in mouse peritoneal macrophages.  Br J Biomed Sci. 2000;  57 130-6
  • 41 Pang Z J, Chen Y, Zhou M. Polysaccharide Krestin enhances manganese superoxide dismutase activity and mRNA expression in mouse peritoneal macrophages.  Am J Chin Med. 2000;  28 331-41
  • 42 Asai K, Kato H, Hirose K, Akaogi K, Kimura S, Mukai S, et al. PSK and OK-432-induced immunomodulation of inducible nitric oxide (NO) synthase gene expression in mouse peritoneal polymorphonuclear leukocytes and NO-mediated cytotoxicity.  Immunopharmacol Immunotoxicol. 2000;  22 221-35
  • 43 Liu W K, Ng T B, Sze S F, Tsui K W. Activation of peritoneal macrophages by polysaccharopeptide from the mushroom, Coriolus versicolor .  Immunopharmacology. 1993;  26 139-46
  • 44 Qian Z M, Xu M F, Tang P L. Polysaccharide peptide (PSP) restores immunosuppression induced by cyclophosphamide in rats.  Am J Chin Med. 1997;  25 27-35
  • 45 Lin I H, Hau D M, Chang Y H. Restorative effect of Coriolus versicolor polysaccharides against γ-irradiation-induced spleen injury in mice.  Acta Pharmacol Sin. 1996;  17 102-4
  • 46 Li X Y, Wang J F, Zhu P P, Liu L, Ge J B, Yang S X. Immune enhancement of a polysaccharides peptides isolated from Coriolus versicolor .  Acta Pharmacol Sin. 1990;  11 542-5
  • 47 Mao X W, Archambeau J O, Gridley D S. Immunotherapy with low-dose interleukin-2 and a polysaccharopeptide derived from Coriolus versicolor .  Cancer Biother Radiopharm. 1996;  11 393-403
  • 48 Dong Y, Kwan C Y, Chen Z N, Yang M M. Antitumor effects of a refined polysaccharide peptide fraction isolated from Coriolus versicolor: in vitro and in vivo studies.  Res Commun Mol Pathol Pharmacol. 1996;  92 140-8
  • 49 Misaki A, Kakuta M, Sasaki T, Tanaka M, Miyaji H. Studies on interrelation of structure and antitumor effects of polysaccharides: antitumor action of periodate-modified, branched (1→ 3)-β-D-glucan of Auricularia auricula-judae, and other polysaccharides containing (1→ 3)-glycosidic linkages.  Carbohydr Res. 1981;  92 115-29
  • 50 Kiho T, Shiose Y, Nagai K, Ukai S. Polysaccharides in fungi. XXX. Antitumor and immunomodulating activities of two polysaccharides from the fruiting bodies of Armillariella tabescens .  Chem Pharm Bull (Tokyo). 1992;  40 2110-4
  • 51 Lee S S, Wei Y H, Chen C F, Wang S Y, Chen K Y. Antineoplastic effects of Ganodermal ucidum .  J Chin Med. 1995;  6 1-12
  • 52 Li J F, Guo J W, Huang X F. Study on the enhancing effect of Polyporus polysaccharide, Mycobacterium polysaccharide and lentinan on lymphokine-activated killer cell activity in vitro Chin J Integr Trad West Med.  1996;  16 224-6
  • 53 Li J F, Huang X F, Lin B Y. The effects on NK and endogenous LAK activities of splenic cells in mice by Polyporus polysaccharide in vivo .  Chin J Microbiol Immunol. 1995;  15 89-91
  • 54 Wu G S, Zhang L Y, Okuda H. Inhibitive effect of Umbellatus polyporus polysaccharide on cachexic manifestation induced by toxohormone-L in rats.  Chin J Integr Trad West Med. 1997;  17 232-3
  • 55 Chihara G, Hamuro I, Maeda Y, Arai Y, Fukuoka F. Antitumor polysaccharide derived chemically from natural glucan (pachyman).  Nature. 1970;  225 943-4
  • 56 Kanayama H, Togami M, Adachi N, Fukai Y, Okumoto T. Studies on the antitumor active polysaccharides from the mycelia of Poria cocos Wolf. III. Antitumor activity against mouse tumors.  Yakugaku Zasshi. 1986;  106 307-12
  • 57 Gao Q P, Jiang R Z, Chen H Q, Jensen E, Seljelid R. Characterization and cytokine stimulating activities of heteroglycans from Tremella fuciformis .  Planta Med. 1996;  62 297-302
  • 58 Gao Q, Killie M K, Chen H, Jiang R, Seljelid R. Characterization and cytokine-stimulating activities of acidic heteroglycans from Tremella fuciformis .  Planta Med. 1997;  63 457-60
  • 59 Xia D, Lin Z B. Effects of Tremella polysaccharides on immune function in mice.  Acta Pharmacol Sin. 1989;  10 453-7
  • 60 Tomoda M, Shimizu N, Ohara N, Gonda R, Ishii S, Otsuki H. A reticuloendothelial system-activating glycan from the roots of Astragalus membranaceus .  Phytochemistry. 1991;  31 63-6
  • 61 Fang S D, Chen Y, Xu X Y, Ye C Q, Zhai S K, Shen M L. Studies of the active principles of Astragalus mongholicus Bunge. I. Isolation, characterization and biological effect of its polysaccharides. Org Chem 1982: 26-31
  • 62 Huang Q S, Lu G B, Li Y C, Guo J H, Wang R X. Studies on the polysaccharides of “Huang Qi” (Astragalus mongholicus Bunge).  Acta Pharm Sin. 1982;  17 200-6
  • 63 Shimizu N, Tomoda M, Kanari M, Gonda R. An acidic polysaccharide having activity on the reticuloendothelial system from the root of Astragalus mongholicus .  Chem Pharm Bull (Tokyo). 1991;  39 2969-72
  • 64 Toshino S, Tabata T, Hazama S M, Iizuka N, Yamamoto K, Hirayama M, et al. Immunoregulatory effects of the antitumor polysaccharide lentinan on Th1/Th2 balance in patients with digestive cancers.  Anticancer Res. 2000;  20C 4707-11
  • 65 Chang C Y, Hou Y D, Xu F M. Effects of Astragalus membranaceus on enhancement of mouse natural killer cell activity.  Acta Acad Med Sin. 1983;  5 231-4
  • 66 Tu W W, Yang Y Q, Wang L J, Zhang Y W, Shen J. In vivo effects of Astragalus membranaceus on immunoglobulin G subclass deficiency.  Chin J Immunol. 1995;  11 34-7
  • 67 Wang D Y, Li C Y, Pong D W. Effect of Astragalus polysaccharide on RNase and RNase inhibitor.  Acta Biochem Biophys Sin. 1984;  16 285-90
  • 68 Chu D T, Wong W L, Mavligit G M. Immunotherapy with Chinese medicinal herbs. II. Reversal of cyclophosphamide-induced immune suppression by administration of fractionated Astragalus membranaceus in vivo .  J Chin Lab Immunol. 1988;  25 125-9
  • 69 Chen L J, Shen M L, Wang M Y, Zhai S K, Liu M Z. Effect of Astragalus polysaccharides on phagocytic function in mice.  Acta Pharmacol Sin. 1981;  2 200-4
  • 70 Zhao K W, Kong H Y. Effect of Astragalan on secretion of tumor necrosis factors in human peripheral blood mononuclear cells.  Chin J Integr Trad West Med. 1993;  13 263-5, 259
  • 71 Ma D, Cai G R, Liu C M. Inhibitory effect of Astragalus membranaceus and Acanthopanax senticosus on proliferation of human ovarian cancer cells in vitro .  Tumor. 1992;  12 51-2
  • 72 Lau B H, Ruckle H C, Botolazzo T, Lui P D. Chinese medicinal herbs inhibit growth of murine renal cell carcinoma.  Cancer Biother. 1994;  9 153-61
  • 73 Yang H X, Zhao G. Death and apoptosis of LAK cell during immunologic assault and the rescuing effects of APS.  Chin J Clin Oncol. 1998;  25 669-72
  • 74 Cha R J, Zeng D W, Chang Q S. Non-surgical treatment of small cell lung cancer with chemo-radio-immunotherapy and traditional Chinese medicine.  Chin J Int Med. 1994;  33 462-6
  • 75 Wang D C. Influence of Astragalus membranaceus (AM) polysaccharide FB on immunologic function of human periphery blood lymphocyte.  Chin J Oncol. 1989;  11 180-3
  • 76 Chu D T, Wong W L, Mavligit G M. Immunotherapy with Chinese medicinal herbs. I. Immune restoration of local xenogeneic graft-versus-host reaction in cancer patients by fractionated Astragalus membranaceus in vitro .  J Chin Lab Immunol. 1988;  25 119-23
  • 77 He J, Zhang S H. Isolation and composition of Lycium barbarum polysaccharides.  Chin Pharm J (Beijing). 1996;  31 716-20
  • 78 Tian G Y, Wang C. Structure elucidation of a high MW glycan of a glycoprotein isolated from the fruit of Lycium barbarum L.  Acta Biochimica Biophysica Sinica. 1995;  27 493-8
  • 79 Zhao C J, He Y Q, Li R Z, Cui G H. Chemistry and pharmacological activtiy of peptidoglycan from Lycium barbarum .  Chin Chem Lett. 1996;  7 1009-10
  • 80 Gan L, Zhang S. Determination of four fractions of Lycium barbarum polysaccharides in different varieties.  J Chin Med Mater. 2001;  24 107-8
  • 81 Du S Y, Qian Y K. Effect of extract of Lycium barbarum on the IL-2R expression of humen lymphocytes.  Chin J Microbiol Immunol. 1995;  15 176-8
  • 82 Sun W J, Sui D Y, Yu X F, Lu Z Z, Hou C Z. Pharmacological studies of polysaccharide-proteins from Lycium barbarum .  J Norman Bethune Univ Med Sci. 1996;  22 486-7
  • 83 Geng C S, Xing S T, Zhou J H, Chu B M. Enhancing effect of Lycium barbarum polysaccharides on the interleukin-2 activity in mice.  Chin J Pharmacol Toxicol. 1989;  3 175-9
  • 84 Zhang X, Li J, Liang H B, Wang L, Qian Y K. Effects of Lycium barbarum polysaccharide on the cell membrane fruidity and protein kinase C in vitro .  J Beijing Med Univ. 1997;  29 118-20
  • 85 Zhang X, Xiang S L, Cui X Y, Qian Y K. Effects of Lycium barbarum polysaccharide (LBP) on lymphocyte signal transduction system in mice.  Chin J Immunol. 1997;  13 289-92
  • 86 Geng C S, Wang G Y, Lin Y D, Xin S T, Zhou J H. The effect of barbary wolfberry (Lycium barbarum) polysaccharide on [3H]thymidine incorporation into splenic lymphocytes and on suppressor T-lymphocytes in mice.  Chin Trad Herbal Drugs. 1988;  19 313-5
  • 87 Cao G W, Du P. Influence of Lycium barbarum polysaccharides and interleukin-2 in vivo on the induction of two kinds of LAK cells from aged mice in vitro .  Chin J Microbiol Immunol. 1992;  12 390-2
  • 88 Wang B X, Xing S T, Zhou J H. Effect of Lycium barbarum polysaccharides on the immune responses of T, CTL and NK cells in normal and cyclophosphamide-treated mice.  Chin J Pharmacol Toxicol. 1990;  4 39-43
  • 89 Cao G W, Yang W G, Du P. Observation of the effects of LAK/IL-2 therapy combining with Lycium barbarum polysaccharides in the treatment of 75 cancer patients.  Chin J Oncol. 1994;  16 428-31
  • 90 Liu J N, Cheng B Q, Zhang J R, Tan X R, Ji Y Z. Effect of Lycium polysaccharide on immune responses of cancer patients following radiotherapy.  Zhonghua Fangshe Yixue Yu Fanghu Zazhi. 1996;  16 18-20
  • 91 Sun W J, Xu W L, Zhang Y X, Huang R H, Duan G S. Therapeutic effects of Lycium barbarum polysaccharides in combination with irradiation and carmustine in G422 tumor-bearing mice.  Chin J Clin Oncol. 1994;  21 930-2
  • 92 Lu C X, Cheng B Q. Radiosensitizing effects of Lycium barbarum polysaccharide for Lewis lung cancer.  Chin J Integr Trad West Med. 1991;  11 611-2
  • 93 Liu J L, Zhang L H, Qian Y K. Tumor inhibition of Lycium barbarum polysaccharide on S180-bearing mice.  Chin J Immunol. 1996;  12 115-7
  • 94 Zhang S J, Zhang S Y. Polysaccharides of Dangshen (Codonopsis pilosula).  Chin Trad Herbal Drugs. 1987;  18 98-100
  • 95 Shan B E, Yoshida Y, Sugiura T, Yamashita U. Stimulating activity of Chinese medicinal herbs on human lymphocytes in vitro .  Int J Immunopharmacol. 1999;  21 149-59
  • 96 Mao X L, Zhou Y. Preliminary study of the effects of extract of Codonopsis pilosula on immunological functions of normal and immunosuppressed mice introduced by cyclophosphamide.  Chin J Integr Trad West Med. 1985;  5 739-41
  • 97 Hu S K. Effect of the combination of Codonopsis pilosula and cyclophosphamide on the transplantable tumor and tumor-bearing mice.  Chin J Integr Trad West Med. 1985;  5 618-21
  • 98 Zeng X L, Li X A, Zhang B Y. Immunological and hematopoietic effect of Codonopsis pilosula on cancer patients during radiotherapy.  Chin J Integr Trad West Med. 1992;  12 607-8, 581
  • 99 Wang R H, Zhang S, Chen X, Shen B F. Inhibition of protein synthesis in cell-free system by single chain ribosome-inactivating proteins.  Chin Biochem J. 1992;  8 395-9
  • 100 Wang Y, Gu Z W, Ye G J, Sun X J, Wang Q H, Jin S W. Revision of the primary structure of trichosanthin and study on the trichosanthin from different places of origin.  Acta Chim Sin. 1993;  51 1023-9
  • 101 Wu T W, Pang K C, Wu C C, Wu H T, Chang Y M, Ni C C, et al. Growth of single crystals and determination of unit-cell parameters for trichosanthin.  Kexue Tongbao. 1978;  23 176-8
  • 102 Dong T X, Ng T B, Yeung H W, Wong R NS. Isolation and characterization of a novel ribosome-inactivating protein, β-kirilowin, from the seeds of Trichosanthes kirilowii .  Biochem Biophys Res Commun. 1994;  199 387-93
  • 103 Wong R NS, Dong T X, Ng T B, Choi W T, Yeung H W. α-Kirilowin, a novel ribosome-inactivating protein from seeds of Trichosanthes kirilowii (family Cucurbitaceae): a comparison with β-kirilowin and other related proteins.  Int J Pept Protein Res. 1996;  47 103-9
  • 104 Gu Y, Chen W, Xia Z. Molecular modeling of the interactions of trichosanthin with four substrate analogs.  J Protein Chem. 2000;  19 291-7
  • 105 Gu Y J, Xia Z X. Crystal structures of the complexes of trichosanthin with four substrate analogs and catalytic mechanism of RNA N-glycosidase.  Proteins. 2000;  39 37-46
  • 106 Nie H, Cai X, He X, Xu L, Ke K, Ke Y, et al. Position 120 - 123, a potential active site of trichosanthin.  Life Sci. 1998;  62 491-500
  • 107 Xi Z D, Ma B L, Yang L M, Cao H N, Wang M. Active site of trichosanthin acting as a ribosome-inactivating protein.  Acta Pharmacol Sin. 1997;  18 447-51
  • 108 Mulot S, Chung K K, Li X B, Wong C C, Ng T B, Shaw P C. The antigenic sites of trichosanthin a ribosome-inactivating protein with multiple pharmacological properties.  Life Sci. 1997;  61 2291-303
  • 109 Shaw P C, Chan W L, Yeung H W, Ng T B. Minireview: trichosanthin - a protein with multiple pharmacological properties.  Life Sci. 1994;  55 253-62
  • 110 Takemoto D J. Effect of trichosanthin, an anti-leukemia protein on normal mouse spleen cells.  Anticancer Res. 1998;  18(A) 357-61
  • 111 Lu P X, Jin Y C. Trichosanthin in the treatment of hydatidiform mole.  Clinical analysis of 52 cases. Chin Med J (Engl Ed). 1990;  103 183-5
  • 112 Zhang C Y, Gong Y X, Ma H, An C C, Chen D Y. Trichosanthin induced calcium-dependent generation of reactive oxygen species in human choriocarcinoma cells.  Analyst. 2000;  125 1539-42
  • 113 Ru Q H, Luo G A, Liao J J, Liu Y. Capillary electrophoretic determination of apoptosis of HeLa cells induced by trichosanthin.  J Chromatogr A. 2000;  894 165-70
  • 114 Zhang R P, Xu C J, Cao H T, Ji R H, Zhang Z C. In vitro inhibition of trichosanthin-conjugate on human melanoma cells.  Chin J Immunol. 1993;  9 348-51
  • 115 Wang Q C, Ying W B, Xie H, Zhang Z C, Yang Z H, Ling L Q. Trichosanthin-monoclonal antibody conjugate specifically cytotoxic to human hepatoma cells in vitro .  Cancer Res. 1991;  51 3353-5
  • 116 Gao H L, Zhou G Y, Lu D Y, Zhang W Y. Trichosanthin - CEA Mab conjugate cytotoxic to human colon carcinoma.  Chin J Immunol. 1992;  8 300-3
  • 117 Islam M R, Nishida H, Funatsu G. Complete amino acid sequence of luffin-α, a ribosome-inactivating protein from the seeds of Luffa cylindrica .  Agric Biol Chem. 1990;  54 1343-5
  • 118 Chen R S, Leung H W, Dong Y C, Wong R N. Modeling of the three-dimensional structure of luffin-α and its stimulated reaction with the substrate oligoribonucleotide GAGA.  J Protein Chem. 1996;  15 649-57
  • 119 Kataoka J, Habuka N, Miyano M, Masuta C, Koiwai A. Nucleotide sequence of cDNA encoding β-luffin, another ribosome-inactivating protein from Luffa cylindrica .  Plant Mol Biol. 1993;  19 887-9
  • 120 Gao W, Ling J, Zhong X, Liu W, Zhang R, Yang H, et al. Luffin-S: a small novel ribosome-inactivating protein from Luffa cylindrica. Characterization and mechanism studies.  FEBS Lett. 1994;  347 257-60
  • 121 Ng T B, Chan W Y, Yeung H W. Proteins with abortifacient, ribosome inactivating, immunomodulatory, antitumor and anti-AIDS activities from Cucurbitaceae plants.  Gen Pharmacol. 1992;  23 579-90
  • 122 Poma A, Marcozzi G, Cesare P, Carmignani M, Spano L. Antiproliferative effect and apoptotic resonse in vitro of human melanoma cells to liposomes containing the ribosome-inactivating protein luffin.  Biochim Biophys Acta. 1999;  1472 197-205
  • 123 Poma A, Miranda M, Spano L. Differential response of human melanoma and Ehrlich ascites cells in vitro to the ribosome-inactivating protein luffin.  Melanoma Res. 1998;  8 465-7
  • 124 Huang B, Ng T B, Fong W P, Wan C C, Yeung H W. Isolation of a trypsin inhibitor with deletion of N-terminal pentapeptide from the seeds of Momordica cochinchinensis, the Chinese drug mubiezhi.  Int J Biochem Cell Biol. 1999;  31 707-15
  • 125 Hernandez J F, Gagnon J, Chiche L, Nguyen T M, Andrieu J P, Heitz A, et al. Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure.  Biochemistry. 2000;  39 5722-30
  • 126 Zhang A H, Tang S, Liu W. Substrate-structure dependence of ribotoxins on cleaving RNA in C. camphora ribosome.  J Nat Toxins. 2001;  10 119-25
  • 127 Xu Y Z, Li Y J, Hu H Y, Hu R, Wu H, Liu W Y. Adenine nucleotide N-glycosidase activity of the A-chain of cinnamomin characterized by 1H-nuclear magnetic resonance.  Biol Chem. 2000;  381 447-51
  • 128 Ruan J P, Chen W F, Liu W Y. Promotion of ATP and S-140 to ribosome inactivation with camphorin, cinnamomin, and other RNA N-glycosidases.  Acta Pharmacol Sin. 1998;  19 261-4
  • 129 Li X D, Chen W F, Liu W Y, Wang G H. Large-scale preparation of two new ribosome-inactivating proteins-cinnamomin and camphorin from the seeds of Cinnamomum camphora .  Protein Expr Purif. 1997;  10 27-31
  • 130 Kurinov I V, Mao C, Irvin J D, Uckun F M. X-ray crystallographic analysis of pokeweed antiviral protein-II after reductive methylation of lysine residues.  Biochem Biophys Res Commun. 2000;  275 549-52
  • 131 Ferens W A, Hovde C J. Antiviral activity of shiga toxin 1: suppression of bovine leukemia virus-related spontaneous lymphocyte proliferation.  Infect Immun. 2000;  68 4462-9
  • 132 Schlick J, Dulieu P, Desvoyes B, Adami P, Radom J, Jouvenot M. Cytotoxic activity of a recombinant GnRH-PAP fusion toxin on human tumor cell lines.  FEBS Lett. 2000;  472 241-6
  • 133 Waurzyniak B, Schneider E A, Tumer N, Yanishevski Y, Gunther R, Chelstrom L M, et al. In vivo toxicity, pharmacokinetics, and antileukemic activity of TXU (anti-CD7)-pokeweed antiviral protein immunotoxin.  Clin Cancer Res. 1997;  3 881-90
  • 134 Zhong R K, van De Winkel J G, Thepen T, Schultz L D, Ball E D. Cytotoxicity of anti-cd64-ricin a chain immunotoxin against human acute myeloid leukemia cells in vitro and in scid mice.  J Hematother Stem Cell Res. 2001;  10 95-105
  • 135 van Oosterhout Y V, van Ernst J L, Bakker H H, Preijers F W, Schattenberg A V, Ruiter D J, et al. Production of anti-CD3 and anti-CD7 ricin A-immunotoxins for a clinical pilot study.  Int J Pharm. 2001;  221 175-86
  • 136 Schindler J, Sausville E, Messmann R, Uhr J W, Vitetta E S. The toxicity of deglycosylated ricin A chain-containing immunotoxins in patients with non-Hodgkin's lymphoma is exacerbated by prior radiotherapy: a retrospective analysis of patients in five clinical trials.  Clin Cancer Res. 2001;  7 255-8
  • 137 Longo D L, Duffey P L, Gribben J G, Jaffe E S, Curti B D, Gause B L, et al. Combination chemotherapy followed by an immunotoxin (anti-B4-blocked ricin) in patients with indolent lymphoma: results of a phase II study.  Cancer J Sci Am. 2000;  6 146-50
  • 138 Messmann R A, Vitetta E S, Headlee D, Senderowicz A M, Figg W D, Schindler J, et al. A phase I study of combination therapy with immunotoxins IgG-HD37-deglycosylated ricin A chain (dgA) and IgG-RFB4-dgA (Combotox) in patients with refractory CD19(+), CD22(+) B cell lymphoma.  Clin Cancer Res. 2000;  6 1302-13
  • 139 Schnell R, Vitetta E, Schindler J, Borchmann P, Barth S, Ghetie V, et al. Treatment fo refractory Hodgkin's lymphoma patients with an anti-CD25 rich A-chain immunotoxin.  Leukemia. 2000;  14 129-35
  • 140 Grossbard M L, Multani P S, Freedman A S, O'Day S, Gribben J G, Rhuda C, et al. A Phase II study of adjuvant therapy with anti-B4-blocked ricin after autologous bone marrow transplantation for patients with relapsed B-cell non-Hodgkin's lymphoma.  Clin Cancer Res. 1999;  5 2392-8

3 Part I. Low Molecular Compounds: Planta Med 2003: 69: 97 - 108

Dr. Barbara Bertram

Div. Toxicology and Cancer Risk Factors

Deutsches Krebsforschungszentrum

D-69120 Heidelberg

Phone: +49 (0)6221 423030

Fax: +49 (0)6221 423031

Email: b.bertram@dkfz.de

    >