Horm Metab Res 2004; 36(1): 14-21
DOI: 10.1055/s-2004-814197
Original Basic
© Georg Thieme Verlag Stuttgart · New York

Effect of Streptozotocin-diabetes on the Functioning of the Sphingomyelin-signalling Pathway in Skeletal Muscles of the Rat

M.  Górska1 , A.  Dobrzyń2 , M.  Żendzian-Piotrowska2 , J.  Górski2
  • 1Department of Gerontology, Medical University of Białystok, Białystok, Poland
  • 2Department of Physiology, Medical University of Białystok, Białystok, Poland
Further Information

Publication History

Received 24 June 2002

Accepted after revision 18 June 2003

Publication Date:
25 February 2004 (online)

Abstract

Aims/hypothesis: Ceramide is the main second messenger in the sphingomyelin-transmembrane signalling pathway. The compound is likely to play a role in the induction of insulin resistance. The aim of the present study was to examine the effect of streptozotocin diabetes on the content and composition of ceramides and sphingomyelins and the activity of neutral Mg2+-dependent sphingomyelinase and acid sphingomyelinase in different types of skeletal muscle of the rat. Methods: The experiments were carried out on two groups of male Wistar rats weighing 250 - 280 g: controls and those treated with streptozotocin at a dose of 60 mg/kg. Determinations were performed on three types of skeletal muscle: the slow-twitch oxidative (soleus), fast-twitch oxidative-glycolytic (red section of the gastrocnemius) and fast-twitch glycolytic (white section of the same muscle). The content and composition of ceramide- and sphingomyelin-fatty acids were determined using gas-liquid chromatography. The activity of the enzymes was measured using N-[14CH3]-sphingomyelin as the substrate. Results: Twelve different ceramides and sphingomyelins were identified and quantified in each muscle with regard to the fatty acid residue. The ratio of total content of ceramide-saturated fatty acids to the total content of ceramide-unsaturated fatty acids was more than two. In the case of sphingomyelin, the ratio was similar to ceramide in the soleus and much higher in both sections of the gastrocnemius. Treatment with streptozotocin increased the total content of ceramide-fatty acids by 78 % (p < 0.001) in the soleus, 27.5 % (p < 0.01) in the red and 36.9 % (p < 0.001) in the white section of the gastrocnemius. Concomitantly, the total content of sphingomyelin-fatty acids decreased by 43.8 %, 31.2 %, 24.8 % (p < 0.001 in each case) in the respective muscles. The activity of neutral Mg2+-dependent sphingomyelinase was elevated by 69.5 %, 105.9 % and 62.3 % in the soleus and red and white gastrocnemius, respectively (p < 0.001 for each muscle). The activity of acid sphingomyelinase was stable in the soleus and white gastrocnemius and decreased by 15.7 % (p < 0.01) in the red gastrocnemius. Conclusion/interpretation: The results obtained show that insulin deficiency results in elevation in the content of ceramide in skeletal muscles. This indicates that the hormone is involved in regulation of the activity of the sphingomyelin-signalling pathway in the muscles.

References

  • 1 Ariano M A, Amstrong R B, Edgerton V R. Hindlimb muscle fibre population of five animals.  J Histochem Cytochem. 1979;  21 51-55
  • 2 Begum N, Ragolia L. Effect of tumor necrosis factor-α on insulin action in cultured rat skeletal muscle cells.  Endocrinology. 1996;  137 2441-2446
  • 3 Begum N, Ragolia L, Srinivasan M. Effect of tumor necrosis factor-α on insulin-stimulated mitogen-activated protein kinase cascade in cultured rat skeletal muscle cells.  Eur J Biochem. 1996;  238 214-220
  • 4 Bradford N M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding.  Anal Biochem. 1976;  72 248-254
  • 5 Brindley D N, Wang C N, Mei J, Xu J, Hanna A N. Tumor necrosis factor-α and ceramides in insulin resistance.  Lipids. 1999;  34 S85-S88
  • 6 Dobrzyń A, Górski J. Ceramides and sphingomyelins in skeletal muscles of the rat: content and composition. Effect of prolonged exercise.  Am J Physiol Endocrinol Metab. 2002;  282 E277-E285
  • 7 Folch J, Lees M, Stanley G HS. A simple method for the isolation and purification of total lipids from animal tissues.  J Biol Chem. 1957;  226 497-509
  • 8 Gómez-Muñoz A. Modulation of cell signalling by ceramides.  Biochim Biophys Acta. 1998;  1391 92-109
  • 9 Grigsby R J, Dobrowsky R T. Inhibition of ceramide production reverses TNF-induced insulin resistance.  Biochem Biophys Res Commun. 2001;  287 1121-1124
  • 10 Hajduch E, Balendran A, Batty I H, Litherland G J, Blair A S, Downes C P, Hundal H S. Ceramide impairs the insulin-dependent membrane recruitment of protein kinase B leading to a loss in downstream signalling in L6 skeletal muscle cells.  Diabetologia. 2001;  44 73-183
  • 11 Hannun Y A, Luberto C. Ceramide in the eucariotic stress response.  Trends Cell Biol. 2000;  10 73-80
  • 12 Mahadevappa V G, Holub B J. Chromatographic analysis of phosphinositides and their breakdown products in activated blood platelets/neutrophils. In: Kuksis A Chromatography of Lipids in Biomedical Research and Clinical Diagnosis. Amsterdam, The Netherlands; Elsevier 1987: 225-265
  • 13 Mathias S, Peña L A, Kolesnick R N. Signal transduction of stress via ceramide.  Biochem J. 1998;  335 465-480
  • 14 Morrison W R, Smith L M. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol.  J Lipid Res. 1964;  5 600-608
  • 15 Pfeilschifter J, Huwiler A. Ceramides as key players in cellular response.  News Physiol Sci. 2000;  15 11-15
  • 16 Prevati M, Bertolaso L, Tramarin M, Bertagnolo V, Capitani S. Low nanogram range quantitation of diglycerides and ceramide by high-performance liquid chromatography.  Anal Biochem. 1996;  233 108-114
  • 17 Riboni L, Viani P, Bassi R, Prinetti A, Tettamanti G. The role of sphingolipids in the process of signal transduction.  Prog Lipid Res. 1997;  36 153-195
  • 18 Schissel S L, Schuchman E H, Wiliams K J, Tabas I. Zn2+-stimulated sphingomyelinase is secreted by many cell types and is a product of the acid sphingomyelinase gene.  J Biol Chem. 1996;  271 18431-18436
  • 19 Schmitz-Peiffer C, Craig D L, Biden T J. ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate.  J Biol Chem. 1999;  274 24 202-24 210
  • 20 Spence M W, Byers D M, Palmer F BStC, Cook H W. A new Zn2+-stimulated sphingomyelinase in fetal bovine serum.  J Biol Chem. 1989;  264 5358-5363
  • 21 Sullivan T E, Amstrong R B. Rat locomotory muscle fiber activity during trotting and galloping.  J Appl Physiol Respir Environ Exercise Physiol. 1978;  44 358-363
  • 22 Summers S A, Garza L A, Zhou H, Brinbaum M J. Regulation of insulin-stimulated glucose transporter GLUT4 translocation and AKT kinase activity by ceramide.  Mol Cell Biol. 1998;  18 5457-5464
  • 23 Tomiuk S, Zumbansen M, Stoffel W. Characterization and subcellular localization of Murine and human magnesium-dependent neutral sphingomyelinase.  J Biol Chem. 2000;  275 5710-5717
  • 24 Turinsky J, Bayly B P, O’Sullivan D M. 1,2-diacylglycerol and ceramide levels in rat skeletal muscle and liver in vivo. Studies with insulin, exercise, muscle denervation and vasopressin.  J Biol Chem. 1990;  265 7933-7938
  • 25 Van der Vusse G J, Roeman T HM, Reneman R S. Assessment of fatty acids in dog left ventricular myocardium.  Biochim Biophys Acta. 1980;  617 347-352
  • 26 Wang C N, O’Brien L, Brindley D N. Effects of cell-permeable ceramides and tumor necrosis factor-α on insulin signaling and glucose uptake in 3T3-L1 adipocytes.  Diabetologia. 1998;  47 24-31

Dr. J. Górski

Department of Physiology · Medical University of Białystok

15-230 Białystok · Poland ·

Phone: +48(85)7485585

Fax: +48(85)7485586

Email: gorski@amb.edu.pl

    >