Horm Metab Res 2004; 36(6): 415-422
DOI: 10.1055/s-2004-814565
Review
© Georg Thieme Verlag Stuttgart · New York

Gas Chromatography-Mass Spectrometry Profiling of Steroids in Times of Molecular Biology

S.  A.  Wudy1 , M.  F.  Hartmann1
  • 1Steroid Research Unit, Center of Child and Adolescent Medicine, Justus Liebig University, Germany
Further Information

Publication History

Received 25 November 2003

Accepted after Revision 26 February 2004

Publication Date:
07 July 2004 (online)

Abstract

This review’s aim is to outline the potential of gas chromatography-mass spectrometry profiling of steroids in the diagnosis of endogenous human steroid disorders. Mass spectrometry currently provides the highest specificity in clinical steroid analysis. The non-invasive and non-selective GC-MS urinary steroid profiling technique enables diagnosis of almost any adrenal enzyme defects in steroid biosynthesis. While enzymatic defects can be diagnosed from spot urine samples in most cases, analysis of 24-hr urinary samples permits determination of hormonal excretion rates or enables diagnostic or therapeutic monitoring of steroid related diseases. Profiling plasma steroids by isotope dilution/GC-MS is particularly suitable where only minimal plasma samples are available and/or the highest specificity is required; therefore, GC-MS steroid profiling presents a complementary analytical technique whenever highest specificity is required. Clinical GC-MS profiling of steroids is also highly recommended as a reasonable initial diagnostic approach - especially in unclear situations - avoiding uncritical and expensive attempts at molecular diagnostic testing.

References

  • 1 Shackleton C HL, Chai W. Mass spectrometry: application to steroid and peptide research.  Endocr Rev. 1985;  6 441-486
  • 2 Shackleton C HL, Merdinck J, Lawson A M. Steroid and bile acid analyses. In: Mc Ewen CN, Larsen BS (eds) Mass spectrometry of biological materials. New York; Marcel Dekker 1990: 297-378
  • 3 Wudy S A, Homoki J, Teller W M. Clinical steroid analysis by gas chromatography-mass spectrometry. In: Niessen WMA (ed) Current practice of gas chromatography-mass spectrometry. New York, Basel; Marcel Dekker 2001: 309-339
  • 4 Wudy S A, Homoki J. Profiling steroids by gas chromatography-mass spectrometry: clinical applications. In: Ranke MB (ed) Diagnostics of endocrine function in children and adolescents. Basel; Karger 2003: 427-449
  • 5 Honour J W. Steroid profiling.  Ann Clin Biochem. 1997;  34 32-44
  • 6 Shackleton C HL. Mass spectrometry in the diagnosis of steroid-related disorders and in hypertension research.  J Steroid Biochem Molec Biol. 1993;  45 127-140
  • 7 Homoki J, Sólyom J, Wachter U, Teller W M. Urinary excretion of 17-hydroxypregnanolones in patients with different forms of congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency.  Eur J Pediatr. 1992;  151 24-28
  • 8 Homoki J, Sólyom J, Teller W M. Detection of late onset steroid 21-hydroxylase deficiency by capillary gas chromatographic profiling of urinary steroids in children and adolescents.  Eur J Pediatr. 1988;  147 257-262
  • 9 Wudy S A, Homoki J, Wachter U A, Teller W M. Diagnosis of the adrenogenital syndrome caused by 11β-hydroxylase deficiency using gas chromatographic-mass spectrometric analysis of the urinary steroid profile.  Dtsch Med Wschr. 1997;  122 3-10
  • 10 Sólyom J, Halasz Z, Hosszú E, Glaz E, Vihko R, Orava M, Homoki J, Wudy S A, Teller W M. Serum and urinary steroids in girls with precocious pubarche and/or hirsutism due to mild 3β-hydroxysteroiddehydrogenase deficiency.  Horm Res. 1995;  44 133-141
  • 11 D’Armiento M, Reda G, Kater C, Shackleton C HL, Biglieri E G. 17α-hydroxylase deficiency: mineralocorticoid profiles in an affected family.  J Clin Endocrinol Metab. 1983;  56 697-701
  • 12 Fardella C E, Hum D W, Homoki J, Miller W L. Point mutation of Arg 440 to His in cytochrome P450c17 causes severe 17α-hydroxylase deficiency.  J Clin Endorinol Metab. 1994;  79 160-164
  • 13 Hauffa B P, Sólyom J, Glaz E, Shackleton C HL, Wambach G, Vecsei P, Stolecke H, Homoki J. Severe hypoaldosteronism due to corticosterone methyl oxidase type II deficiency in two boys: metabolic and gas chromatography-mass spectrometry studies.  Eur J Pediatr. 1991;  150 149-153
  • 14 Honour J W, Dillon M J, Shackleton C HL. Analysis of steroids in urine for differentiation of pseudohypoaldosteronism and aldosterone biosynthetic defect.  J Clin Endocrinol Metab. 1982;  54 325-331
  • 15 Müller-Berghaus J, Homoki J, Michalk D U, Querfeld U. Diagnosis and treatment of a child with the syndrome of apparent mineralocorticoid excess type 1.  Acta Paediatr. 1996;  85 111-113
  • 16 Phillipou G, Higgins B A. A new defect in the peripheral conversion of cortisone to cortisol.  J Steroid Biochem. 1985;  22 435-436
  • 17 Imperato-McGinley J, Gautier T, Pichardo M, Shackleton C HL. The diagnosis of 5α-reductase activity in infancy.  J Clin Endocrinol Metab. 1986;  63 1313-1318
  • 18 Stewart P M, Shackleton C HL, Beastall G H, Edwards C RW. 5α-reductase activity in polycystic ovary syndrome.  Lancet. 1990;  335 431-433
  • 19 Homoki J, Holl R, Teller W M. Urinary steroid profile in Cushing syndrome and in tumors of the adrenal cortex.  Klin Wochenschr. 1987;  65 719-726
  • 20 Honour J W, Price D A, Taylor N F, Marsden H B, Grant D B. Steroid biochemistry of virilising adrenal tumors in childhood.  Eur J Pediatr. 1984;  142 165-169
  • 21 Malunowicz E M, Ginalska-Malinowska M, Romer T E, Ruszczynska-Wolska A, Dura M. Heterogeneity of urinary steroid profiles in children with adrenocortical tumors.  Horm Res. 1995;  44 182-188
  • 22 Gröndal S, Eriksson B, Hagenäs L, Werner S, Curstedt T. Steroid profile in urine: a useful tool in the diagnosis and follow up of adrenocortical carcinoma.  Acta Endocrinol (Copenh). 1990;  122 656-663
  • 23 Shackleton C, Roitman E, Guo L W, Wilson W K, Porter F. Identification of 7(8) and 8(9) unsaturated adrenal steroid metabolites produced by patients with 7-dehydrosterol-Δ7-reductase deficiency (Smith-Lemli-Opitz syndrome).  J Steroid Biochem Molec Biol. 2002;  82 225-232
  • 24 Wong T, Shackleton C HL, Covey T R, Ellis G. Identification of the steroids in neonatal plasma that interfere with 17α-hydroxyprogesterone radioimmunoassays.  Clin Chem. 1992;  38 1830-1837
  • 25 Chasalow F I, Blethen S I, Duckett D, Zeitlin S, Greenfield J. Serum levels of dehydroepiandrosterone sulfate as determined by commercial kits and reagents.  Steroids. 1989;  54 373-383
  • 26 Silberzahn P, Dehennin L, Zwain I, Reiffsteck A. Gas chromatography-mass spectrometry of androgens in equine ovarian follicles at ultrastructurally defined stages of development.  Endocrinology. 1985;  117 2176-2181
  • 27 Middle J G. The quality assessment of steroid hormone assays. In: Makin HLJ, Gower DB, Kirk DN (eds.) Steroid Analysis. London; Blackie Academic & Professional 1995: 647-696
  • 28 Wudy S A. Synthetic procedures for the preparation of deuterium-labeled analogs of naturally occurring steroids.  Steroids,. 1990;  55 463-471
  • 29 Wudy S A, Wachter U A, Homoki J, Teller W M. 17α-hydroxyprogesterone, 4-androstenedione, and testosterone profiled by stable isotope dilution/gas chromatography-mass spectrometry in plasma of children.  Ped Res. 1995;  38 76-80
  • 30 Wudy S A, Hartmann M, Solleder C, Wachter U A, Homoki J. Clinical steroid hormone analysis by stable isotope dilution/gas chromatography-mass spectrometry. In: Heys JR, Melillo DG, (eds) Synthesis and Applications of Isotopically Labelled Compounds 1997. Chichester; John Wiley & Sons 1998: 575-579
  • 31 Wudy S A, Wachter U A, Homoki J, Teller W M, Shackleton C HL. Androgen metabolism assessement by routine gas chromatography/mass spectrometry profiling of plasma steroids: part 1, unconjugated steroids.  Steroids. 1992;  57 319-324
  • 32 Wudy S A, Dörr H G, Solleder C, Homoki J. Profiling steroid hormones in amniotic fluid of midpregnancy by routine stable isotope gas chromatography-mass spectrometry: reference values and concentrations in fetuses at risk for 21-hydroxylase deficiency.  J Clin Endocrinol Metab. 1999;  84 2724-2728
  • 33 Wudy S A, Hartmann M, Solleder C, Homoki J. Determination of 17α-hydroxypregnenolone in human plasma by routine isotope dilution mass spectrometry using bench top gas chromatography-mass selective detection.  Steroids,. 2001;  66 759-762
  • 34 Wudy S A, Wachter U A, Homoki J, Teller W M. Determination of dehydroepiandrosterone sulfate in human plasma by gas chromatography/mass spectrometry using a deuterated internal standard: a method suitable for routine clinical use.  Horm Res. 1993;  39 235-240
  • 35 Wudy S A, Wachter U A, Homoki J, Teller W M. 5α-androstane-3α,17β-diol and 5α-androstane-3α,17β-diol-glucuronide in plasma of normal children, adults and patients with idiopathic hirsutism: a mass spectrometric study.  Eur J Endocrinol. 1996;  134 87-92
  • 36 Wudy S A, Hartmann M, Homoki J. Determination of 11-deoxycortisol (Reichstein’s Compound S) in human plasma by clinical isotope dilution mass spectrometry using benchtop gas chromatography-mass selective detection.  Steroids. 2002;  67 851-857
  • 37 Wudy S A, Hartmann M, Homoki J. Hormonal diagnosis of 21-hydroxylase deficiency in plasma and urine of neonates using benchtop gas chromatography-mass spectrometry.  J Endocrinol. 2000;  165 679-683

Prof. Dr. S. A. Wudy

Steroid Research Unit, Center of Child and Adolescent Medicine

Justus Liebig University · Feulgenstr. 12 · 35392 Giessen · Germany

Email: stefan.wudy@paediat.med.uni-giessen.de

    >