Semin Musculoskelet Radiol 2003; 7(4): 297-307
DOI: 10.1055/s-2004-815677
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

T 2 Mapping of Muscle

Carolynn Patten1,2,3 , Ronald A. Meyer4 , James L. Fleckenstein5
  • 1Rehabilitation Research & Development Center, VA Palo Alto Health Care System, Palo Alto,.CA
  • 2Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford CA
  • 3Department of Rehabilitation Sciences, Boston University, Boston, MA
  • 4Department of Physiology, Michigan State University, East Lansing, MI
  • 5University of Texas Southwestern Medical Center, Dallas, TX
Further Information

Publication History

Publication Date:
21 January 2004 (online)

ABSTRACT

Muscle activation produces increases in magnetic resonance (T 2) signal intensity leading to recruitment images that demonstrate spatial patterns and intensity of muscle activation. These T 2 activation maps are useful for visualizing and quantifying various aspects of muscle function. Activity-dependent changes in T 2 result from an increase in the T 2 relaxation time of muscle water. The current state of investigation indicates that the mechanism of increased T 2 results from osmotically driven shifts of muscle water that increase the volume of the intracellular space and from intracellular acidification resulting from the end products of metabolism. Although the spatial resolution of magnetic resonance imaging is still insufficient to map territories of individual motor units, it is possible to demonstrate nonuniform activation between subregions or compartments of muscle. Taken together, the attributes of the T 2 mapping technique hold great potential for demonstrating aberrant muscle activation patterns in pathology and positive adaptation to exercise or rehabilitative intervention.

REFERENCES

  • 1 Shellock F G, Tyson L L, Fleckenstein J L. Diagnostic Imaging of Skeletal Muscle Exercise Physiology and Pathophysiology. In: Fleckenstein JL, Crues JV, Reimers CD, editors. Muscle Imaging in Health and Disease New York: Springer 1996: 113-132
  • 2 Drace J E, Pelc N J. Measurement of skeletal muscle motion in vivo with phase-contrast MR imaging.  J Magn Reson Imaging . 1994;  4 157-163
  • 3 Pappas G P, Asakawa D S, Delp S L, Zajac F E, Drace J E. Nonuniform shortening in the biceps brachii during elbow flexion.  J Appl Physiol . 2002;  92 2381-2389
  • 4 Asakawa D S, Blemker S S, Gold G E, Delp S L. In vivo motion of the rectus femoris muscle after tendon transfer surgery.  J Biomech . 2002;  35 1029-1037
  • 5 Kent-Braun J A, Ng A V, Castro M. et al . Strength, skeletal muscle composition, and enzyme activity in multiple sclerosis.  J Appl Physiol . 1997;  83 1998-2004
  • 6 Kent-Braun J A, McCully K K, Chance B. Metabolic effects of training in humans: a 31P-MRS study.  J Appl Physiol . 1990;  69 1165-1170
  • 7 Fleckenstein J L, Canby R C, Parkey R W, Peshock R M. Acute effects of exercise on MR imaging of skeletal muscle in normal volunteers.  AJR Am J Roentgenol . 1988;  151 231-237
  • 8 Fisher M J, Meyer R A, Adams G R, Foley J M, Potchen E J. Direct relationship between proton T2 and exercise intensity in skeletal muscle MR images.  Invest Radiol . 1990;  25 480-485
  • 9 Adams G R, Duvoisin M R, Dudley G A. Magnetic resonance imaging and electromyography as indexes of muscle function.  J Appl Physiol . 1992;  73 1578-1583
  • 10 Yue G, Alexander A L, Laidlaw D H, Gmitro A F, Unger E C, Enoka R M. Sensitivity of muscle proton spin-spin relaxation time as an index of muscle activation.  . 1994;  77 84-92
  • 11 Ploutz L L, Tesch P A, Biro R L, Dudley G A. Effect of resistance training on muscle use during exercise.  J Appl Physiol . 1994;  76 1675-1681
  • 12 Akima H, Takahashi H, Kuno S-Y. et al . Early phase adaptations of muscle use and strength to isokinetic training.  Med Sci Sports Exerc . 1999;  31 588-594
  • 13 Meyer R A, Prior B M. Functional magnetic resonance imaging of muscle.  Exerc Sport Sci Rev . 2000;  28 89-92
  • 14 Fleckenstein J L. MRI of neuromuscular disease: the basics.  Semin Musculoskelet Radiol . 2000;  4 393-419
  • 15 Fleckenstein J L, Bertocci L A, Nunnally R L, Parkey R W, Peshock R M. 1989 ARRS Executive Council Award. Exercise-enhanced MR imaging of variations in forearm muscle anatomy and use: Importance in MR spectroscopy.  Am J Roentgenol . 1989;  153 693-698
  • 16 Disler D G, Cohen M S, Krebs D E, Roy S H, Rosenthal D I. Dynamic evaluation of exercising leg muscle in healthy subjects with echo planar MR imaging: work rate and total work determine rate of T2 change.  J Magn Reson Imaging . 1995;  5 588-593
  • 17 Kilcoyne R F, Richardson M L, Porter B A, Olson D O, Greenlee T K, Lanzer W. Magnetic resonance imaging of soft tissue masses.  Clin Orthop 1988 Mar;(288):13-9.
  • 18 Prior B M, Foley J M, Jayaraman R C, Meyer R A. Pixel T2 distribution in functional magnetic resonance images of muscle.  J Appl Physiol . 1999;  87 2107-2114
  • 19 Ray C A, Dudley G A. Muscle use during dynamic knee extension: implication for perfusion and metabolism.  J Appl Physiol . 1998;  85 1194-1197
  • 20 McComas A J, Galea V, De Bruin H. Motor unit populations in healthy and diseased muscles.  Phys Ther . 1993;  73(12) 868-877
  • 21 Fleckenstein J L, Watumull D, McIntire D D, Bertocci L A, Chason D P, Peshock R M. Muscle proton T2 relaxation times and work during repetitive maximal voluntary exercise.  J Appl Physiol . 1993;  74 2855-2859
  • 22 Jenner G, Foley J M, Cooper T G, Potchen E J, Meyer R A. Changes in magnetic resonance images of muscle depend on exercise intensity and duration, not work.  J Appl Physiol . 1994;  76 2119-2124
  • 23 Shellock F G, Fukunaga T, Mink J H, Edgerton V R. Acute effects of exercise on MR imaging of skeletal muscle: concentric vs eccentric actions.  Am J Roentgenol . 1991;  156 765-768
  • 24 Fleckenstein J L, Haller R G, Lewis S F. et al . Absence of exercise-induced MRI enhancement of skeletal muscle in McArdle's disease.  J Appl Physiol . 1991;  71 961-969
  • 25 Fleckenstein J L, Watumull D, Bertocci L A, Parkey R W, Peshock R M. Finger-specific flexor recruitment in humans: depiction by exercise-enhanced MRI.  J Appl Physiol . 1992;  72 1974-1977
  • 26 Houmard J A, Smith R, Jendrasiak G L. Relationship between MRI relaxation time and muscle fiber composition.  J Appl Physiol . 1995;  78 807-809
  • 27 Donahue K M, Van Kylen J, Guven S. et al . Simultaneous gradient-echo/spin-echo EPI of graded ischemia in human skeletal muscle.  J Magn Reson Imaging . 1998;  8 1106-1113
  • 28 Sjogaard G, Saltin B. Extra- and intracellular water spaces in muscles of man at rest and with dynamic exercise.  Am J Physiol . 1982;  243 R271-R280
  • 29 Sjogaard G, Adams R P, Saltin B. Water and ion shifts in skeletal muscle of humans with intense dynamic knee extension.  Am J Physiol . 1985;  248 R190-R196
  • 30 Lundvall J, Mellander S, Westling H, White T. Fluid transfer between blood and tissues during exercise.  Acta Physiol Scand . 1972;  85 258-269
  • 31 Ploutz-Snyder L L, Nyren S, Cooper T G, Potchen E J, Meyer R A. Different effects of exercise and edema on T2 relaxation in skeletal muscle.  Magn Reson Med . 1997;  37 676-682
  • 32 Conley K E, Cress M E, Jubrias S A, Esselman P E, Odderson I R. From muscle properties to human performance, using magnetic resonance.  J Gerontol . 1995;  50A(Special Issue) 35-40
  • 33 Buckey J C, Peshock R M, Blomqvist C G. Deep venous contribution to hydrostatic blood volume change in the human leg.  Am J Cardiol . 1988;  62 449-453
  • 34 Damon B M, Gregory C D, Hall K L, Stark H J, Gulani V, Dawson M J. Intracellular acidification and volume increases explain R(2) decreases in exercising muscle.  Magn Reson Med . 2002;  47 14-23
  • 35 Saab G, Thompson R T, Marsh G D. Effects of exercise on muscle transverse relaxation determined by MR imaging and in vivo relaxometry.  J Appl Physiol . 2000;  88 226-233
  • 36 Prior B M, Ploutz-Snyder L L, Cooper T G, Meyer R A. Fiber type and metabolic dependence of T2 increases in stimulated rat muscles.  J Appl Physiol . 2001;  90 615-623
  • 37 Reid R W, Foley J M, Jayaraman R C, Prior B M, Meyer R A. Effect of aerobic capacity on the T(2) increase in exercised skeletal muscle.  J Appl Physiol . 2001;  90 897-902
  • 38 Kulig K, Powers C M, Shellock F G, Terk M. The effects of eccentric velocity on activation of elbow flexors: evaluation by magnetic resonance imaging.  Med Sci Sports Exerc . 2001;  33 196-200
  • 39 Bratton C B, Hopkins A L, Weinberg J W. Nuclear magnetic studies of living muscle.  Science . 1965;  147 738-739
  • 40 McCully K K, Boden B P, Tuchler M, Fountain M R, Chance B. Wrist flexor muscles of elite rowers measured with magnetic resonance spectroscopy.  J Appl Physiol . 1989;  67 926-932
  • 41 Flicker P L, Fleckenstein J L, Ferry K. et al . Lumbar muscle usage in chronic low back pain. Magnetic resonance image evaluation.  Spine . 1993;  18 582-586
  • 42 Foley J M, Reid R W, Vaughn D W, Andary M T, Meyer R A. Assessment of motor unit pathology by functional MRI.  Med Sci Sports Exerc . 1999;  31 S207
  • 43 Patten C, Srisethnil J, Asakawa D S, Gold G E. Imaging activation impairment in post-stroke hemiparesis. International Society of Magentic Resonance in Medicine, Honolulu, HI, 2002
  • 44 Bickel C S, Slade J M, Dudley G A. Complete spinal cord injury increases susceptibility to isometric contraction induced muscle injury.  Neurology Report . 2002;  26 210
  • 45 Adams G R, Harris R T, Woodard D, Dudley G A. Mapping of electrical muscle stimulation using MRI.  J Appl Physiol . 1993;  74 532-537
  • 46 Arokoski J P, Valta T, Airaksinen O, Kankaanpaa M. Back and abdominal muscle function during stabilization exercises.  Arch Phys Med Rehabil . 2001;  82 1089-1098
  • 47 Crossley K, Cowan S M, Bennell K L, McConnell J. Patellar taping: is clinical success supported by scientific evidence?.  Man Ther . 2000;  5 142-150
  • 48 Gilleard W, McConnell J, Parsons D. The effect of patellar taping on the onset of vastus medialis obliquus and vastus lateralis muscle activity in persons with patellofemoral pain.  Phys Ther . 1998;  78 25-32
  • 49 Murray W M, Bryden A M, Kilgore K L, Keith M W. The influence of elbow position on the range of motion of the wrist following transfer of the brachioradialis to the extensor carpi radialis brevis tendon.  J Bone Joint Surg Am . 2002;  84A 2203-10
  • 50 Sutherland D H, Zilberfarb J L, Kaufman K R, Wyatt M P, Chambers H G. Psoas release at the pelvic brim in ambulatory patients with cerebral palsy: operative technique and functional outcome.  J Pediatr Orthop . 1997;  17 563-570
  • 51 Ogawa S, Menon R S, Kim S G, Ugurbil K. On the characteristics of functional magnetic resonance imaging of the brain.  Annu Rev Biophys Biomol Struct . 1998;  27 447-474
  • 52 Bauer W R, Nadler W, Bock M. et al . The relationship between the BOLD-induced T(2) and T(2)(*): a theoretical approach for the vasculature of myocardium.  Magn Reson Med . 1999;  42 1004-1010
  • 53 Burke R E. Motor units: anatomy, physiology, and functional organization. In: Brookhart JM, Mountcastle VB, Brooks VB, editors. Handbook of Physiology, Section I: The Nervous System, Volume II: Motor Control, Part I Bethesda, MD: American Physiological Society 1981: 345-422
  • 54 Henneman E, Mendell L M. Functional organization of motoneuron pool and its inputs. In: Brookhart JM, Mountcastle VB, Brooks VB, editors. Handbook of Physiology, Section I: The Nervous System, Volume II: Motor Control, Part I Bethesda, MD: American Physiological Society 1981: 423-507
  • 55 McComas A J, Upton A RM, Sica R EP. Functional changes in motorneurones of hemiparetic patients.  J Neurol Neurosurg Psychiatry . 1973;  36 183-193
  • 56 Campbell M J, McComas A J, Petito F. Physiological changes in ageing muscles.  J Neurol Neurosurg Psychiatry . 1973;  36 174-182
    >