Exp Clin Endocrinol Diabetes 2004; 112(5): 258-263
DOI: 10.1055/s-2004-817973
Article

J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Impairment of the NO/cGMP Pathway in the Fasting and Postprandial State in Type 1 Diabetes Mellitus

K. Farkas1 , G. Jermendy1 , M. Herold2 , É. Ruzicska2 , M. Sasvári3 , A. Somogyi2
  • 1III. Department of Medicine, Bajcsy-Zsilinszky Hospital, Budapest, Hungary
  • 2II. Department of Medicine, Semmelweis University, Faculty of Medicine, Budapest, Hungary
  • 3Clinical and Experimental Research Institute, Semmelweis University, Faculty of Health Sciences, Budapest, Hungary
Further Information

Publication History

Received: April 7, 2003 First decision: June 16, 2003

Accepted: October 6, 2003

Publication Date:
14 May 2004 (online)

Abstract

The assessment of the postprandial state in diabetes mellitus has gained importance due to postprandial hyperglycemia being considered as an independent risk factor for cardiovascular disease. Hyperglycemia may contribute to vascular dysfunction through the alteration of the nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway.

The authors assessed the NO/cGMP pathway in the fasting and postprandial state in 20 type 1 diabetic patients (age: 34.1 ± 2.6 years, body mass index (BMI): 24.1 ± 1.3 kg/m2, duration of diabetes: 16 ± 2.2 years, HbA1C: 8.3 ± 0.4 %, [x ± SEM], 10 without, 10 with late complications) and 20 matched control subjects (age: 39.7 ± 1.9 years, BMI: 25.3 ± 1.1 kg/m2).

In the fasting state NO end product (nitrite/nitrate) levels did not differ between the diabetic and control group, cGMP levels were found to be significantly lower in the diabetic group (2.5 ± 0.2 vs. 4.6 ± 0.6 nmol/l, p = 0.01). A higher level of lipid peroxidation end products (TBARS) was found in diabetic subjects (6.7 ± 0.4 vs. 5.0 ± 0.3 µmol/l, p = 0.004). The diabetic subgroup without late complications had significantly higher nitrite/nitrate levels compared to the patients with complications (57.8 ± 6.6 vs. 30.4 ± 4.3 µmol/l, p = 0.006), their TBARS and cGMP levels were similar.

The control subjects responded to the test meal with an increase in the cGMP levels (4.6 ± 0.6 to 5.5 ± 0.6 nmol/l, p = 0.02), while in the diabetic group no change was detected. Postprandial nitrite/nitrate levels decreased in both groups, they were significantly lower in the diabetic group. There was no difference between postprandial nitrite/nitrate, cGMP, or glucose levels in the diabetic subgroups. Postprandial glucose levels showed a significant negative correlation with cGMP levels in the diabetic group (r = - 0.50, p = 0.02).

The results suggest that in subjects with type 1 diabetes mellitus NO might have an impaired ability to induce cGMP production in the fasting state prior to the development of late specific complications or microalbuminuria under hyperglycemic conditions. Postprandial hyperglycemia is suggested to interfere with endothelial NO action, as shown by the decreased nitrite/nitrate and unchanged cGMP plasma levels in the diabetic group. The impairment of the NO/cGMP pathway both in the fasting and postprandial state that was shown in patients without diabetic complications may be an early sign of hyperglycemia induced vascular damage in type 1 diabetes mellitus.

References

  • 1 Adams M R, Robinson J, McCredie R, Seale J P, Sorensen K E, Deanfield J E, Celermajer D S. Smooth muscle dysfunction occurs independently of impaired endothelium-dependent dilation in adults at risk of atherosclerosis.  J Am Coll Cardiol. 1998;  32 123-127
  • 2 Avogaro A, Calo L, Piarulli F, Miola M, deKreutzenberg S, Maran A, Burlina A, Mingardi R, Tiengo A, Del Prato S. Effect of acute ketosis on the endothelial function of type 1 diabetic patients.  Diabetes. 1999;  48 391-397
  • 3 Aydin A, Orhan H, Sayal A, Özata M, Sahin G, Isimer A. Oxidative stress and nitric oxide related parameters in type II diabetes mellitus: effects of glycaemic control.  Clin Biochem. 2001;  34 65-70
  • 4 Baron A D. Insulin resistance and vascular function.  J Diabetes Complications. 2002;  16 92-102
  • 5 Baynes J W. Role of oxidative stress in development of complications in diabetes.  Diabetes. 1991;  40 405-412
  • 6 Brownlee M. Biochemistry and molecular cell biology of diabetic complications.  Nature. 2001;  414 813-820
  • 7 Calver A, Collier J, Vallance P. Inhibition and stimulation of nitric oxide synthesis in the human forearm arterial bed of patients with insulin-dependent diabetes.  J Clin Invest. 1992;  90 2548-2554
  • 8 Ceriello A. Hyperglycaemia: the bridge between non-enzymatic glycation and oxidative stress in the pathogenesis of diabetic complications.  Diab Nutr Metab. 1999;  12 42-46
  • 9 Ceriello A. The post-prandial state and cardiovascular disease: relevance to diabetes mellitus.  Diabetes Metab Res Rev. 2000;  16 125-132
  • 10 Clark M G, Wallis M G, Barrett E J, Vincent M A, Richards S M, Clerk L H, Rattigan S. Blood flow and muscle metabolism: a focus on insulin action.  Am J Physiol Endocrinol Metab. 2003;  284 E241-258
  • 11 Clarkson P, Celermayer D S, Donald A E, Sampson M, Sorensen K E, Adams M, Yue D K, Betteridge D J, Deanfield J E. Impaired vascular reactivity in insulin-dependent diabetes mellitus is related to disease duration and low density lipoprotein cholesterol levels.  J Am Coll Cardiol. 1996;  28 573-579
  • 12 Cohen R A. The role of nitric oxide and other endothelium-derived vasoactive substances in vascular disease.  Prog Cardiovasc Dis. 1995;  38 105-128
  • 13 Cosentino F, Hishikawa K, Katusic Z S, Luscher T F. High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells.  Circulation. 1997;  96 25-28
  • 14 Coutinho M, Gerstein H C, Wang Y, Yusuf S. The relationship between glucose and incident cardiovascular events: a metaregression analysis of published data from 20 studies of 95, 783 individuals followed for 12. 4 years.  Diabetes Care. 1999;  22 233-240
  • 15 Diabetes Control and Complications Trial Research Group . The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus.  New Engl J Med. 1993;  329 977-986
  • 16 Dogra G, Rich L, Stanton K, Watts G F. Endothelium-dependent and independent vasodilation studied at normoglycaemia in type 1 diabetes mellitus with and without microalbuminuria.  Diabetologia. 2001;  44 593-601
  • 17 Elliott T G, Cockcroft J R, Groop P H, Viberti G C, Ritter J M. Inhibition of nitric oxide synthesis in forearm vasculature of insulin-dependent diabetic patients: blunted vasoconstriction in patients with microalbuminuria.  Clin Sci. 1993;  85 687-693
  • 18 Enderle M D, Benda N, Schmuelling R M, Haering H U, Pfohl M. Preserved endothelial function in IDDM patients but not in NIDDM patients compared with healthy subjects.  Diabetes Care. 1998;  21 271-277
  • 19 Farkas K, Sármán B, Jermendy G, Somogyi A. Endothelial nitric oxide in diabetes mellitus: Too much or not enough?.  Diab Nutr Metab. 2000;  13 287-297
  • 20 Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications.  Diabetes Care. 1996;  19 257-267
  • 21 Halkin A, Benjamin N, Doktor H S, Todd S D, Viberti G C, Ritter J M. Vascular responsiveness and cation exchange in insulin-dependent diabetes.  Clin Sci. 1991;  81 223-232
  • 22 Harrison D G. Cellular and molecular mechanisms of endothelial cell dysfunction.  J Clin Invest. 1997;  100 2153-2157
  • 23 Huvers F C, De Leeuw P W, Houben A J, De Haan C H, Hamulyak K, Schouten H, Wolffenbuttel B H, Schaper N C. Endothelium-dependent vasodilatation, plasma markers of endothelial function, and adrenergic vasoconstrictor responses in type 1 diabetes under near-normoglycemic conditions.  Diabetes. 1999;  48 1300-1307
  • 24 Lefebvre P J, Scheen A J. The postprandial state and risk of cardiovascular disease.  Diabet Med. 1998;  15 Suppl 4 S63-68
  • 25 Lekakis J, Papamichael C, Anastasiou H, Alevizaki M, Desses N, Souvatzoglou A, Stamatelopoulos S, Koutras D A. Endothelial dysfunction of conduit arteries in insulin-dependent diabetes mellitus without microalbuminuria.  Cardiovasc Res. 1997;  34 164-168
  • 26 Moshage H, Kok B, Huizenga J R, Jansen P LM. Nitrite and nitrate determinations in plasma: a critical evaluation.  Clin Chem. 1995;  41 892-896
  • 27 Münzel T, Heitzer T, Harrison D G. The physiology and pathophysiology of the nitric oxide/superoxide system.  Herz. 1997;  22 158-172
  • 28 Ohta T, Arai Y, Takitani S. Fluorometric determination of nitrite with 4-hydrocoumarin.  Anal Chem. 1986;  58 3132-3135
  • 29 Piatti P M, Monti L D, Zavaroni I, Valsecchi G, van Phan C, Costa S, Conti M, Sandoli E P, Solerte B, Pozza G, Pontiroli A E, Reaven G. Alterations in the nitric oxide/cyclic-GMP pathway in nondiabetic siblings of patients with type 2 diabetes.  J Clin Endocrinol Metab. 2000;  85 2416-2420
  • 30 Pieper G M. Enhanced, unaltered and impaired nitric oxide-mediated endothelium-dependent relaxation in experimental diabetes mellitus: importance of disease duration.  Diabetologia. 1999;  42 204-213
  • 31 Pyles L A, Stejskal E J, Einzig S. Spectrophotometric measurement of plasma thiobarbituric acid reactive substances in the presence of hemoglobin and bilirubin interference.  PSEBM. 1993;  202 407-419
  • 32 Smits P, Kapma J A, Jacobs M C, Lutterman J, Thien T. Endothelium-dependent vascular relaxation in patients with type 1 diabetes mellitus.  Diabetes. 1993;  42 148-153
  • 33 Tarr F I, Sasvari M, Dudas G, Kroo M, Somogyi A, Tomcsanyi I. Quantitative measurement of endothelium derived nitric oxide production of the internal mammary artery bypass graft during extracorporeal circulation.  Eur J Cardiothorac Surg. 2001;  19 653-656
  • 34 Trovati M, Anfossi G. Influence of insulin and of insulin resistance on platelet and vascular smooth muscle cell function.  J Diabetes Complications. 2002;  16 35-40
  • 35 UK Prospective Diabetes Study (UKPDS) Group . Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).  Lancet. 1998;  352 837-853
  • 36 Vlassara H, Palace M R. Diabetes and advanced glycation endproducts.  J Intern Med. 2002;  251 87-101
  • 37 Wei M, Gaskill S P, Haffner S M, Stern M P. Effects of diabetes and level of glycemia on all-cause and cardiovascular mortality. The San Antonio Heart Study.  Diabetes Care. 1998;  21 1167-1172
  • 38 Weber M, Lauer N, Mulsch A, Kojda G. The effect of peroxynitrite on the catalytic activity of soluble guanyl cyclase.  Free Radic Biol Med. 2001;  31 1360-1367
  • 39 Williamson J R, Chang K, Frangos M, Hasan K S, Ido Y, Kawamura T, Nyengaard J R, van den Enden M, Kilo C, Tilton R G. Hyperglycemic pseudohypoxia and diabetic complications.  Diabetes. 1993;  42 801-813
  • 40 Yki-Järvinen H, Utriainen U. Insulin-induced vasodilatation: physiology or pharmacology?.  Diabetologia. 1998;  41 369-379
  • 41 Zeballos G A, Bernstein R D, Thompson C I, Forfia P R, Seyedi N, Shen W, Kaminiski P M, Wolin M S, Hintze T H. Pharmacodynamics of plasma nitrate/nitrite as an indication of nitric oxide formation in conscious dogs.  Circulation. 1995;  91 2982-2988
  • 42 Zenere B M, Arcari G, Saggiani F, Rossi L, Muggeo M, Lechi A. Noninvasive detection of functional alterations of the arterial wall in IDDM patients with and without microalbuminuria.  Diabetes Care. 1995;  18 975-982

Dr. Klara Farkas

III. Department of Medicine
Bajcsy-Zsilinszky Hospital

Maglódi út 89 - 91

Budapest 1106

Hungary

Phone: 36-1-2607619

Fax: 36-1-2 60 76 19

Email: Klaralex@axelero.hu

    >