Int J Sports Med 2004; 25(2): 85-91
DOI: 10.1055/s-2004-819943
Training & Testing

© Georg Thieme Verlag Stuttgart · New York

Evaluation of Fitness Level by the Oxygen Uptake Efficiency Slope After a Short-Term Intermittent Endurance Training

L.  Mourot1, 2 , S.  Perrey3 , N.  Tordi2 , J.  D.  Rouillon2
  • 1Laboratoire de Physiologie-Médecine, Besançon, France
  • 2Laboratoire des sciences du sport, Besançon, France
  • 3UPRES-EA 2991, Faculté des Sciences du Sport, Montpellier, France
Further Information

Publication History

Accepted after revision: March 30, 2003

Publication Date:
26 February 2004 (online)

Abstract

Several indicators are used as indices of cardiorespiratory reserve. Among them, oxygen uptake (V·O2) at peak and ventilatory threshold (VAT) levels are the most common used. In the present study, endurance training was used to evaluate and compare the usefulness of a new index, the Oxygen Uptake Efficiency Slope (OUES) as an alternative to the previous ones. Fifteen physical education student women participated in the study (8 as a trained group [T: age (mean ± SD) 21.9 ± 3.3 y, height 165.1 ± 5.5 cm, weight 60.4 ± 3.3 kg] and 7 as a control group [C: age 21.7 ± 1.9 y, height 165.4 ± 7.2 cm, weight 59.6 ± 8.6 kg]). Before and after 6 weeks of the Square-Wave Endurance Exercise Test (SWEET) training program or daily activities, they performed an incremental test (30 W/3 min) on a cycle ergometer to determined V·O2, power output and parameters associated with breathing efficiency (the respiratory equivalents, and the ventilatory dead space to tidal volume ratio [Vd/Vt]) at peak- and VAT-levels. The slope of the relationship between ventilation and carbon dioxide production was also calculated. OUES, derived from the logarithmic relationship between V·O2 and minute ventilation (V·E), was determined at 75 % (OUES75), 90 % (OUES90) and 100 % (OUES100) of exercise duration. After endurance training in T, V·O2 and power output were significantly improved at peak- and VAT-levels while all breathing efficiency indices remained unchanged. No changes were observed in C after 6 weeks. Despite significant correlation between OUES values and V·O2 at peak- and VAT-levels, OUES75, OUES90 and OUES100 did not significantly change after endurance training. While V·O2 and power output at peak- and VAT-levels increased in all T, training-induced changes in OUES appeared more variable. We concluded that OUES was not sufficiently sensitive to highlight improvement of cardiorespiratory reserve after endurance training whereas V·O2 at peak and VAT levels did.

  • 1 Åstrand P O, Rodahl K. Textbook of Work Physiology. Physiological Bases of Exercise. 3rd ed. New York McGraw-Hill 1986 xii: 756
  • 2 Baba R, Kubo N, Morotome Y, Iwagaki S. Reproducibility of the oxygen uptake efficiency slope in normal healthy subjects.  J Sports Med Phys Fitness. 1999;  39 202-206
  • 3 Baba R, Nagashima M, Goto M, Nagano Y, Yokota M, Tauchi N, Nishibata K. Oxygen uptake efficiency slope: a new index of cardiorespiratory functional reserve derived from the relation between oxygen uptake and minute ventilation during incremental exercise.  J Am Coll Cardiol. 1996;  28 1567-1572
  • 4 Baba R, Nagashima M, Nagano Y, Ikoma M, Nishibata K. Role of the oxygen uptake efficiency slope in evaluating exercise tolerance.  Arch Dis Child. 1999;  81 73-75
  • 5 Baba R, Tsuyuki K, Kimura Y, Ninomiya K, Aihara M, Ebine K, Tauchi N, Nishibata K, Nagashima M. Oxygen uptake efficiency slope as a useful measure of cardiorespiratory functional reserve in adult cardiac patients.  Eur J Appl Physiol. 1999;  80 397-401
  • 6 Barstow T J, Jones A M, Nguyen P H, Casaburi R. Influence of muscle fibre type and fitness on the oxygen uptake/power output slope during incremental exercise in humans.  Exp Physiol. 2000;  85 109-116
  • 7 Bassett D R, Jr, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance.  Med Sci Sports Exerc. 2000;  32 70-84
  • 8 Bouchard C, An P, Rice T, Skinner J S, Wilmore J H, Gagnon J, Perusse L, Leon A S, Rao D C. Familial aggregation of V·O(2max) response to exercise training: results from the HERITAGE Family Study.  J Appl Physiol. 1999;  87 1003-1008
  • 9 Casaburi R. Mechanisms of the reduced ventilatory requirement as a result of exercise training.  Eur Respir Rev. 1995;  5 42-46
  • 10 Casaburi R, Patessio A, Ioli F, Zanaboni S, Donner C F, Wasserman K. Reductions in exercise lactic acidosis and ventilation as a result of exercise training in patients with obstructive lung disease.  Am Rev Respir Dis. 1991;  143 9-18
  • 11 Claessens P, Claessens C, Claessens M, Bloemen H, Verbanck M, Fagard R. Ventricular premature beats in triathletes: still a physiological phenomenon?.  Cardiology. 1999;  92 28-38
  • 12 Clark A L, Skypala I, Coats A J. Ventilatory efficiency is unchanged after physical training in healthy persons despite an increase exercise tolerance.  J Cardiovasc Risk. 1994;  1 347-351
  • 13 Fredriksen P M, Ingjer F, Nystad W, Thaulow E. A comparison of V·O2(peak) between patients with congenital heart disease and healthy subjects, all aged 8 - 17 years.  Eur J Appl Physiol. 1999;  80 409-416
  • 14 Fredriksen P M, Veldtman G, Hechter S, Therrien J, Chen A, Warsi M A, Freeman M, Liu P, Siu S, Thaulow E, Webb G. Aerobic capacity in adults with various congenital heart diseases.  Am J Cardiol. 2001;  87 310-314
  • 15 Gaesser G A, Poole DC. Lactate and ventilatory thresholds: disparity in time course of adaptations to training.  J Appl Physiol. 1986;  61 999-1004
  • 16 Gimenez M, Servera E, Salinas W. Square-wave endurance exercise test (SWEET) for training and assessment in trained and untrained subjects. I. Description and cardiorespiratory responses.  Eur J Appl Physiol. 1982;  49 359-368
  • 17 Gimenez M, Servera E, Saunier C, Lacoste J. Square-wave endurance exercise test (SWEET) for training and assessment in trained and untrained subjects. II. Blood gases and acid-base balance.  Eur J Appl Physiol. 1982;  49 369-377
  • 18 Hollenberg M, Tager IB. Oxygen uptake efficiency slope: an index of exercise performance and cardiopulmonary reserve requiring only submaximal exercise.  J Am Coll Cardiol. 2000;  36 194-201
  • 19 Hollmann W. 42 years ago-development of the concepts of ventilatory and lactate threshold.  Sports Med. 2001;  31 315-320
  • 20 Hoogeveen A R. The effect of endurance training on the ventilatory response to exercise in elite cyclists.  Eur J Appl Physiol. 2000;  82 45-51
  • 21 Howley E T, Bassett D R, Jr. , Welch H G. Criteria for maximal oxygen uptake: review and commentary.  Med Sci Sports Exerc. 1995;  27 1292-1301
  • 22 Hughson R L, Kowalchuk JM. Influence of diet on CO2 production and ventilation in constant-load exercise.  Respir Physiol. 1981;  46 149-160
  • 23 Jones A M, Carter H. The effect of endurance training on parameters of aerobic fitness.  Sports Med. 2000;  29 373-386
  • 24 Jones N L, Robertson D G, Kane J W. Difference between end-tidal and arterial PCO2 in exercise.  J Appl Physiol. 1979;  47 954-960
  • 25 Lollgen H, Wollschlager H, Schonrich G, Hust M H, Bonzel T, Just H. Ventricular arrhythmias and Q-Tc interval during stress-ECG.  Herz. 1986;  11 303-308
  • 26 Londeree B R. Effect of training on lactate/ventilatory thresholds: a meta-analysis.  Med Sci Sports Exerc. 1997;  29 837-843
  • 27 Lucia A, Carvajal A, Calderon F J, Alfonso A, Chicharro J L. Breathing pattern in highly competitive cyclists during incremental exercise.  Eur J Appl Physiol. 1999;  79 512-521
  • 28 Meyer K, Schwaibold M, Westbrook S, Beneke R, Hajric R, Gornandt L, Lehmann M, Roskamm H. Effects of short-term exercise training and activity restriction on functional capacity in patients with severe chronic congestive heart failure.  Am J Cardiol. 1996;  78 1017-1022
  • 29 Miyachi M, Katayama K. Effects of maximal interval training on arterial oxygen desaturation and ventilation during heavy exercise.  Jpn J Physiol. 1999;  49 401-407
  • 30 Myers J, Salleh A, Buchanan N, Smith D, Neutel J, Bowes E, Froelicher V F. Ventilatory mechanisms of exercise intolerance in chronic heart failure.  Am Heart J. 1992;  124 710-719
  • 31 Oren A, Whipp B J, Wasserman K. Effect of acid-base status on the kinetics of the ventilatory response to moderate exercise.  J Appl Physiol. 1982;  52 1013-1017
  • 32 Pichon A, Jonville S, Denjean A. Evaluation of the Interchangeability of VO2max and Oxygen Uptake Efficiency Slope.  Can J Appl Physiol. 2002;  27 589-601
  • 33 Porszasz J, Barstow T J, Wasserman K. Evaluation of a symmetrically disposed Pitot tube flowmeter for measuring gas flow during exercise.  J Appl Physiol. 1994;  77 2659-2665
  • 34 Rasmussen B, Klausen K, Clausen J P, Trap-Jensen J. Pulmonary ventilation, blood gases, and blood pH after training of the arms or the legs.  J Appl Physiol. 1975;  38 250-256
  • 35 Shimizu M, Myers J, Buchanan N, Walsh D, Kraemer M, McAuley P, Froelicher V F. The ventilatory threshold: method, protocol, and evaluator agreement.  Am Heart J. 1991;  122 509-516
  • 36 Sullivan M J, Cobb FR. The anaerobic threshold in chronic heart failure. Relation to blood lactate, ventilatory basis, reproducibility, and response to exercise training.  Circulation. 1990;  81 II47-1158
  • 37 Sullivan M J, Higginbotham M B, Cobb F R. Increased exercise ventilation in patients with chronic heart failure: intact ventilatory control despite hemodynamic and pulmonary abnormalities.  Circulation. 1988;  77 552-559
  • 38 Tordi N, Belli A, Mougin F, Rouillon J D, Gimenez M. Specific and transfer effects induced by arm or leg training.  Int J Sports Med. 2001;  22 517-524
  • 39 Wasserman K. The anaerobic threshold: definition, physiological significance and identification.  Adv Cardiol. 1986;  35 1-23

L. Mourot

Laboratoire de Physiologie-Médecine · Faculté de Médecine et de Pharmacie

Place St Jacques · 25030 Besançon Cedex · France ·

Phone: +33 381 665654

Fax: +33 381 665614

Email: mourotlaurent@hotmail.com

    >