Horm Metab Res 2004; 36(11/12): 867-876
DOI: 10.1055/s-2004-826178
Review
© Georg Thieme Verlag KG Stuttgart · New York

GLP-1 Receptor Agonists and DPP-4 Inhibitors in the Treatment of Type 2 Diabetes

B.  Ahrén1 , O.  Schmitz2
  • 1Department of Medicine, Lund University, Lund, Sweden
  • 2Department of Endocrinology & Diabetes, University Hospital of Aarhus and Department of Clinical Pharmacology, University of Aarhus, Aarhus, Denmark
Further Information

Publication History

Received 3 August 2004

Accepted after revision 16 August 2004

Publication Date:
18 January 2005 (online)

Abstract

Glucagon-like peptide-1 (GLP-1) is an incretin hormone with antidiabetic action through its ability to stimulate insulin secretion, increase beta cell neogenesis, inhibit beta cell apoptosis, inhibit glucagon secretion, delay gastric emptying and induce satiety. It has therefore been explored as a novel treatment of type 2 diabetes. A problem is, however, that GLP-1 is rapidly inactivated by the dipeptidyl peptidase-4 (DPP-4) enzyme, which results in a short circulating half-life of the active form of GLP-1 (< 2 min). Two strategies have been employed to overcome this obstacle as a treatment of diabetes. One is to use GLP-1 receptor agonists that have a prolonged half-life due to reduced degradation by DPP-4. These GLP-1 mimetics include exenatide and liraglutide. Another strategy is to inhibit the enzyme DPP-4, which prolongs the half-life of endogenously released active GLP-1. Both these strategies have been successful in animal studies and in clinical studies of up to one year’s treatment. This review will summarize the background and the current (mid 2004) clinical experience with these two strategies.

References

  • 1 Zimmet P. The burden of type 2 diabetes: are we doing enough?.  Diabetes Metab. 2003;  29 6S9-18
  • 2 Ceriello A. The possible role of postprandial hyperglyceaemia in the pathogenesis of diabetic complications.  Diabetologia. 2003;  46 M9-M16
  • 3 Turner R C. The U.K. Prospective Diabetes Study. A review.  Diabetes Care. 1998;  suppl 3 C35-38
  • 4 DeFronzo R A, Bonadonna R C, Ferrannini E. Pathogenesis of NIDDM. A balanced overview.  Diabetes Care. 1992;  15 318-368
  • 5 Consoli A. Role of liver in pathophysiology of NIDDM.  Diabetes Care. 1992;  15 430-441
  • 6 Kahn S E. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes.  Diabetologia. 2003;  46 3-19
  • 7 Maggio C A, Pi-Sunyer F X. Obesity and type 2 diabetes.  Endocrinol Metab Clin North Am. 2003;  32 805-822
  • 8 Ahrén B. Glucagon-like peptide 1 (GLP-1) - a gut hormone of potential interest in the treatment of diabetes.  BioEssays. 1998;  20 642-651
  • 9 Holst J J. Therapy of type 2 diabetes mellitus based on the actions of glucagon-like peptide-1.  Diabet Metab Res Rev. 2002;  18 430-441
  • 10 Ahrén B. Gut peptides and type 2 diabetes mellitus treatment.  Curr Diabet Rep. 2003;  3 365-372
  • 11 Drucker D J. Enhancing incretin action for the treatment of type 2 diabetes.  Diabetes Care. 2003;  26 2929-2940
  • 12 Drucker D J. Glucagon-like peptides: rergulators of cell proliferation, differentiation and apoptosis.  Mol Endocrinol. 2003;  17 161-171
  • 13 Farilla L, Bulotta A, Hirshberg B, Li Calzi S, Khoury N, Noushmehr H, Bertolotto C, di Mario U, Harlan D M, Perfetti R. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets.  Endocrinology. 2003;  1344 5149-5158
  • 14 Gutniak M, Ørskov C, Holst J J, Ahrén B, Efendic S. Antidiabetogenic effect of glucagon-like peptide-1 (7-36)amide in normal subjects and patients with diabetes mellitus.  N Engl J Med. 1992;  326 1316-1322
  • 15 Nathan D M, Schreiber E, Fogel H, Mojsov S, Habener J F. Insulinotropic action of glucagonlike peptide-1-(7-37) in diabetic and nondiabetic subjects.  Diabetes Care. 1992;  15 270-276
  • 16 Nauck M A, Kleine N, Ørskov C, Holst J J, Wilms B, Creutzfeldt W. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide-1 (7-36)amide in type 2 (noninsulin-dependent) diabetic patients.  Diabetologia. 1993;  36 741-744
  • 17 Nauck M A, Sauerwaldf A, Ritzel R, Holst J J, Schmiegel W. Influence of glucagon-like peptide 1 on fasting glycemia in type 2 diabetic patients treated with insulin after sulfonylurea failure.  Diabetes Care. 1998;  21 1925-1931
  • 18 Rachman J, Barrow B A, Levy J C, Turner R C. Near-normalisation of diurnal glucose concentrations by continuous administration of glucagon-like peptide-1 (GLP-1) in subjects with NIDDM.  Diabetologia. 1997;  40 205-211
  • 19 Nauck M A, Wollschlager D, Werner J, Holst J J, Ørskov C, Creutzfeldt W, Willms B. Effects of subcutaneous glucagon-like peptide 1 (GLP-1 [7 - 36amide]) in patients with NIDDM.  Diabetologia. 1996;  39 1546-1553
  • 20 Juntti-Berggren L, Pigon J, Karpe F, Hamsten A, Gutniak M, Vignati L, Efendic S. The antidiabetogenic effect of GLP-1 is maintained during a 7-day treatment period and improves diabetic dyslipoproteinemia in NIDDM patients.  Diabetes Care. 1996;  19 1200-1206
  • 21 Gutniak M K, Larsson H, Sanders S W, Juneskans O, Holst J J, Ahrén B. GLP-1 tablet in type 2 diabetes in fasting and postprandial conditions.  Diabetes Care. 1997;  20 1874-1879
  • 22 Ritzel R, Ørskov C, Holst J J, Nauck M A. Pharmacokinetic, insulinotropic, and glucagonostatic properties of GLP-1 [7-36 amide] after subcutaneous injection in healthy volunteers. Dose-response relationships.  Diabetologia. 1995;  38 720-725
  • 23 Zander M, Madsbad S, Madsen J L, Holst J J. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and β-cell function in type 2 diabetes: a parallel-group study.  Lancet. 2002;  359 824-830
  • 24 Nauck M A. Glucagon-like peptide 1 (GLP-1) in the treatment of diabetes.  Horm Metab Res. 2004;  36 852-858
  • 25 Deacon C F. Circulation and degradation of GIP and GLP-1.  Horm Metab Res. 2004;  36 761-765
  • 26 Mentlein R. Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides.  Regul Pept. 1999;  85 9-24
  • 27 Deacon C F, Johnsen A H, Holst J J. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo.  J Clin Endocrinol Metab. 1995;  80 952-957
  • 28 Rolin B, Deacon C F, Carr R D, Ahrén B. The major GLP-1 metabolite, GLP-1-(9-36) amide, does not affect glucose or insulin levels in mice.  Eur J Pharmacol. 2004;  494 283-288
  • 29 Vahl T P, Paty B W, Fuller B D, Prigeon R L, D'Alessio D A. Effects of GLP-1-(7-36)NH2, GLP-1-(7-37), and GLP-1-(9-36)NH2 on intravenlus glucose tolerance and glucose-induced insulin secretion in healthy humans.  J Clin Endocrinol Metab. 2003;  88 1772-1779
  • 30 Knudsen L B, Pridal L. Glucagon-like peptide-1-(9-36) amide is a major metabolite of glucagon-like peptide-1-(7-36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor.  Eur J Pharmacol. 1996;  318 429-435
  • 31 Hopsu-Havy V K, Glenner G G. A new dipeptide naphtylamidase hydrolyzing glycyl-prolyl-β-naphtylamide.  Histochemie. 1966;  7 197-201
  • 32 Lojda Z. Studies on dipeptidyl (amino) peptidase IV (glycyl-proline-naphtylamidase) II Blood vessels.  Histochemistry. 1979;  59 153-166
  • 33 Kurtzhals P, Havelund S, Jonassen I, Kiehr B, Larsen U D, Ribel U, Markussen J. Albumin binding of insulins acylated with fatty acids: characterization of the ligand-protein interaction and correlation between binding affinity and timing of the insulin effect in vivo.  Biochem J. 1995;  312 (Pt 3) 725-731
  • 34 Bjerre Knudsen L. Glucagon-like peptide-1: The basis of a new class of treatment for type 2 diabetes.  J Med Chem. 2004;  47 4128-4134
  • 35 Sturis J, Gotfredsen C F, Romer J, Rolin B, Ribel U, Brand C L, Wilken M, Wassermann K, Deacon C F, Carr R D, Bjerre Knudsen L. GLP-1 derivative liraglutide in rats with beta-cell deficiencies: influence of metabolic state on beta-cell mass dynamics.  Br J Pharmacol. 2003;  140 123-132
  • 36 Larsen P J, Fledelius C, Knudsen L B, Tang-Christensen M. Systemic administration of the long-acting GLP-1 derivative NN2211 induces lasting and reversible weight loss in both normal and obese rats.  Diabetes. 2001;  50 2530-2539
  • 37 Rolin B, Larsen M O, Gotfredsen C F, Deacon C F, Carr R D, Wilken M, Bjerre Knudsen L. The long-acting GLP-1 derivative NN2211 ameliorates glycemia and increases beta-cell mass in diabetic mice.  Am J Physiol Endocrinol Metab. 2002;  283 E745-E752
  • 38 Bock T, Pakkenberg B, Buschard K. The endocrine pancreas in non-diabetic rats after short-term and long-term treatment with the long-acting GLP-1 derivative NN2211.  APMIS. 2003;  111 1117-1124
  • 39 Klein T, Frandsen U, Heller R S, Serup P. IMPAN cells: a pancreatic model for differentiation into endocrine cells.  Arch Biochem Biophys. 2001;  395 259-263
  • 40 Ribel U, Larsen M O, Rolin B, Carr R D, Wilken M, Sturis J, Westergaard L, Deacon C F, Bjerre Knudsen L. NN2211: a long-acting glucagon-like peptide-1 derivative with anti-diabetic effects in glucose-intolerant pigs.  Eur J Pharmacol. 2002;  451 217-225
  • 41 Agerso H, Jensen L B, Elbrond B, Rolan P, Zdravkovic M. The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men.  Diabetologia. 2002;  45 195-202
  • 42 Elbrond B, Jakobsen G, Larsen S, Agerso H, Jensen L B, Rolan P, Sturis J, Hatorp V, Zdravkovic M. Pharmacokinetics, pharmacodynamics, safety, and tolerability of a single-dose of NN2211, a long-acting glucagon-like peptide 1 derivative, in healthy male subjects.  Diabetes Care. 2002;  25 1398-1404
  • 43 Juhl C B, Hollingdal M, Sturis J, Jakobsen G, Agerso H, Veldhuis J, Pørksen N, Schmitz O. Bedtime administration of NN2211, a long-acting GLP-1 derivative, substantially reduces fasting and postprandial glycemia in type 2 diabetes.  Diabetes. 2002;  51 424-429
  • 44 Chang A M, Jakobsen G, Sturis J, Smith M J, Bloem C J, An B, Galecki A, Halter J B. The GLP-1 derivative NN2211 restores beta-cell sensitivity to glucose in type 2 diabetic patients after a single dose.  Diabetes. 2003;  52 1786-1791
  • 45 Degn K B, Juhl C B, Sturis J, Jakobsen G, Brock B, Chandramouli V, Rungby J, Landau B R, Schmitz O. One week"s treatment with the long-acting glucagon-like peptide 1 derivative liraglutide (NN2211) markedly improves 24-h glycemia and alpha- and beta-cell function and reduces endogenous glucose release in patients with type 2 diabetes.  Diabetes. 2004;  53 1187-1194
  • 46 Madsbad S, Schmitz O, Ranstam J, Jakobsen G, Matthews D R. Improved glycemic control with no weight increase in patients with type 2 diabetes after once-daily treatment with the long-acting glucagon-like peptide 1 analog liraglutide (NN2211): a 12-week, double-blind, randomized, controlled trial.  Diabetes Care. 2004;  27 1335-1342
  • 47 Feinglos M, Saad M F, Pi-Sunyer F X, An B, Santiago O. Effects of liraglutide (NN2211), a long-acting GLP-1 derivative, on glycaemic control and body weight in obese subjects with Type 2 diabetes.  Diabetic Medicine. 2004;  in press
  • 48 Dennis M S, Zhang M, Meng Y G, Kadkhodayan M, Kirchhofer D, Combs D, Damico L A. Albumin binding as a general strategy for improving the pharmacokinetics of proteins.  J Biol Chem. 2002;  277 35 035-35 043
  • 49 Kim J G, Baggio L L, Bridon D P, Castaigne J P, Robitaille M F, Jette L, Benquet C, Drucker D J. Development and characterization of a glucagon-like peptide 1-albumin conjugate: the ability to activate the glucagon-like peptide 1 receptor in vivo.  Diabetes. 2003;  52 751-759
  • 50 Lawrence B, Dreyfus J-F, Wen S, Guivarch P-H, Drucker D J, Castaigne J-P. CJC-1131, a Long Acting GLP-1 Derivative, Exhibits an Extended Pharmacokinetic Profile in Healthy Human Volunteers.  Diabetes. 2003;  52 (Suppl. 1) A125
  • 51 Benquet C, Léger R, Huang X, Thibaudeau K, Bridon D, Castaigne J-P. CJC-1131 (DAC: GLP-1) binds covalently in vivo to Endogenous Albumin: Update on the DAC Technology.  Diabetes. 2004;  53 (Suppl. 2) A116
  • 52 Wen S, Chatenoud L, Lawrence B, Franco P, Castaigne J-P, Bach J-F. Lack of Immunogenicity of CJC-1131, a Long-Acting GLP-1 Analog for the Treatment of Type 2 diabetes.  Diabetes. 2004;  53 (Suppl. 2) A151
  • 53 Bloom M, Bock J, Duttaroy A, Grzegorzewski K, Moore P, Ou Y, Wojcik S, Zhou X, Bell A. Albugon(TM) Fusion Protein: A long-acting analog of GLP-1 that provides lasting antidiabetic effect in animals.  Diabetes. 2003;  52 (Suppl. 1) A112
  • 54 Kapitza C, Trautmann M, Heise T, Heinemann L, Patterson B. Daily administration of LY307161 SR (GLP-1 analog) normalizes blood glucose in type 2 diabetes.  Diabetes. 2002;  51 (Suppl. 2) A84
  • 55 Raufman J P, Jensen R T, Sutliff V E, Pisano J J, Gardner J D. Actions of Gila monster venom on dispersed acini from guinea pig pancreas.  Am J Physiol. 1982;  242 G470-G474
  • 56 Eng J, Kleinman W A, Singh L, Singh G, Raufman J P. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas.  J Biol Chem. 1992;  267 7402-7405
  • 57 Thorens B, Porret A, Buhler L, Deng S P, Morel P, Widmann C. Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9-39) an antagonist of the receptor.  Diabetes. 1993;  42 1678-1682
  • 58 Rai A, Singh G, Raffaniello R, Eng J, Raufman J P. Actions of Helodermatidae venom peptides and mammalian glucagon-like peptides on gastric chief cells.  Am J Physiol. 1993;  265 G118-G125
  • 59 Goke R, Fehmann H C, Linn T, Schmidt H, Krause M, Eng J, Goke B. Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta cells.  J Biol Chem. 1993;  268 19650-19655
  • 60 Chen K, Petrella E, Young A. Effects of functional nephrectomy on clearance of exendin-4 in rats.  Diabetes. 1999;  48 A426
  • 61 Parkes D, Jodka C, Smith P, Nayak S, Rinehart L, Gingerich R, Chen K, Young A. Pharmacokinetic actions of exendin-4 in the rat: Comparison with glucagon-like peptide-1.  Drug Dev Res. 2001;  53 260-267
  • 62 Young A A, Gedulin B R, Bhavsar S, Bodkin N, Jodka C, Hansen B, Denaro M. Glucose-lowering and insulin-sensitizing actions of exendin-4: studies in obese diabetic (ob/ob, db/db) mice, diabetic fatty Zucker rats, and diabetic rhesus monkeys (Macaca mulatta).  Diabetes. 1999;  48 1026-1034
  • 63 Edwards C M, Stanley S A, Davis R, Brynes A E, Frost G S, Seal L J, Ghatei M A, Bloom S R. Exendin-4 reduces fasting and postprandial glucose and decreases energy intake in healthy volunteers.  Am J Physiol Endocrinol Metab. 2001;  281 E155-E161
  • 64 Egan J M, Clocquet A R, Elahi D. The insulinotropic effect of acute exendin-4 administered to humans: comparison of nondiabetic state to type 2 diabetes.  J Clin Endocrinol Metab. 2002;  87 1282-1290
  • 65 Nielsen L L, Baron A D. Pharmacology of exenatide (synthetic exendin-4) for the treatment of type 2 diabetes.  Curr Opin Investig Drugs. 2003;  4 401-405
  • 66 Nielsen L L, Young A A, Parkes D G. Pharmacology of exenatide (synthetic exendin-4): a potential therapeutic for improved glycemic control of type 2 diabetes.  Regul Pept. 2004;  117 77-88
  • 67 Young A A. Glucagon-like peptide-1, exendin and insulin sensitivity. In: Hansen B, Shafrir E (eds.) Insulin Resistance and Insulin Resistance Syndrome. New York; Harwood Academic 2002: 235-262
  • 68 Kolterman O G, Buse J B, Fineman M S, Gaines E, Heintz S, Bicsak T A, Taylor K, Kim D, Aisporna M, Wang Y, Baron A D. Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes.  J Clin Endocrinol Metab. 2003;  88 3082-3089
  • 69 Egan J M, Meneilly G S, Elahi D. Effects of 1-mo bolus subcutaneous administration of exendin-4 in type 2 diabetes.  Am J Physiol Endocrinol Metab. 2003;  284 E1072-E1079
  • 70 Fineman M S, Bicsak T A, Shen L Z, Taylor K, Gaines E, Varns A, Kim D, Baron A D. Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin and/or sulfonylurea treatment in patients with type 2 diabetes.  Diabetes Care. 2003;  26 2370-2377
  • 71 Degn K B, Brock B, Juhl C B, Djurhuus C B, Grubert J, Kim D, Han J, Taylor K, Fineman M, Schmitz O. Effect of intravenous infusion of exenatide (synthetic exendin-4) on glucose-dependent insulin secretion and counterregulation during hypoglycemia.  Diabetes. 2004;  53 2397-2403
  • 72 Vella A, Shah P, Reed A S, Adkins A S, Basu R, Rizza R A. Lack of effect of exendin-4 and glucagon-like peptide-1-(7,36)-amide on insulin action in non-diabetic humans.  Diabetologia. 2002;  45 1410-1415
  • 73 Baron A, Poon T, Taylor K, Nielsen L, Boies S, Zhou J, Zhuang D, Varns A, Kim D, Fineman M, Kolterman O. Exenatide (synthetic exendin-4) showed marked HbA1c decline over 5 months in patients with type 2 diabetes failing oral agents in an open-label study.  Diabetes. 2003;  Suppl. 3-LB
  • 74 Kendall D, Riddle M, Rosenstock J, Zhuang D, Kim D, Fineman M, Baron A. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in patients with type 2 diabetes mellitus treated with metformin and a sulfonylurea.  Diabetes. 2004;  Suppl. 10-LB
  • 75 Buckley D I, Lundquist P. Analysis of the degradation of insulinotropin [GLP-1 (7 - 37)] in human plasma and production of degradation resistant analogs.  Regul Pept. 1992;  40 117
  • 76 Deacon C F, Nauck M A, Toft-Nielsen L, Pridal L, Willms B, Holst J J. Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects.  Diabetes. 1995;  44 1126-1131
  • 77 Kieffer T J, McIntosh C HS, Pederson R A. Degradation of glucose-dependent insulinotropic peptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV.  Endocrinology. 1995;  136 3585-3596
  • 78 Holst J J, Deacon C F. Inhibition of the activity of dipeptidyl-peptidase IV as a treatment for type 2 diabetes.  Diabetes. 1998;  47 1663-1670
  • 79 Deacon , CF , Wamberg S, Biev P, Hughes T E, Holst J J. Preservation of active incretin hormones by inhibition of dipeptidyl peptidase IV suppresses meal-induced incretin secretion in dogs.  J Endocrinol. 2002;  172 355-362
  • 80 Deacon C F, Hughes T E, Holst J J. Dipeptidyl peptidase IV inhibition potentiates the insulinotropic effect of glucagon-like peptide-1 in anesthetized pigs.  Diabetes. 1998;  47 764-769
  • 81 Pederson R A, White H A, Schlenzig D, Pauly R P, McIntosh C H, Demuth H U. Improved glucose tolerance in Zucker fatty rats by oral administration of the dipeptidyl peptidase IV inhibitor isoleucin thiazlodide.  Diabetes. 1998;  47 1253-1258
  • 82 Balkan B, Kwasnik L, Miserendino R, Holst J J, Li X. Inhibition of dipeptidyl peptidase IV with NVP-DPP728 increases plasma GLP-1 (7-36 amide) concentrations and improves oral glucose tolerance in obese Zucker rats.  Diabetologia. 1999;  42 1324-1331
  • 83 Ahrén B, Holst J J, Mårtensson H, Balkan B. Improved glucose tolerance and insulin secretion by inhibition of dipeptidyl peptidase IV in mice.  Eur J Pharmacol. 2000;  404 239-245
  • 84 Kvist Reimer M, Holst J J, Ahrén B. Long-term inhibition of dipeptidyl peptidase IV improves glucose tolerance and preserves islet function in mice.  Eur J Endocrinol. 2002;  146 717-727
  • 85 Pospisilik J A, Stafford S G, Demuth H U, Brownsey R, Parkhouse W, Finegood D T, McIntosh C HS, Pederson R A. Long-term treatment with the dipeptidyl peptidase IV inhibitor P32/98 causes sustained improvements in glucose tolerance, insulin sensitivity, hyperinsulinemia and β-cell glucose responsiveness in VDF (fa/fa) Zucker rats.  Diabetes. 2002;  51 943-950
  • 86 Sudre B, Broqua P, White R B, Ashworth D, Evans D M, Haigh R, Junien J L, Aubert M L. Chronic inhibition of circulating dipeptidyl peptidase IV by FE 999 011 delays the occurrence of diabetes in male Zucker diabetic fatty rats.  Diabetes. 2002;  51 1461-1469
  • 87 Mitani H, Takimoto M, Kimura M. Dipeptidyl peptidase IV inhibitor NVP-DPP728 ameliorates early insulin response and glucose tolerance in aged rats but not in aged Fischer 344 rats lacking its enzyme activity.  Jpn J Pharmacol. 202;  88 451-458
  • 88 Pederson R A, Kieffer T J, Pauly R, Kofod H, Kwong J, McIntosh C HS. The enteroinsular axis in dipeptidyl peptidase IV-negative rats.  Metabolism. 1996;  45 1335-1341
  • 89 Marguet D, Baggio L, Kobayashi T, Bernard A M, Pierres M, Nielsen P F, Ribel U, Watanabe T, Drucker D J, Wagtmann N. Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26.  Proc Natl Acad Sci USA. 2000;  97 6874-6879
  • 90 Nagakura T, Yasuda N, Yamazaki K, Ikuta H, Yoshikawa S, Asano O, Tanaka I. Improved glucose tolerance via enhanced glucose-dependent insulin secretion in dipeptidyl peptidase IV-deficient Fischer rats.  Biochem Biophys Res Commun. 2001;  284 501-506
  • 91 Yasuda N, Nagakura T, Yamazaki K, Inoue T, Tanaka I. Improvement of high fat-induced insulin resistance in dipeptidyl peptidase IV-deficient Fischer rats.  Life Sci. 2002;  71 227-238
  • 92 Demuth H U, Hoffman T, Glund K, McIntosh C HS, Pederson R A, Fueker K, Fischer S, Hanefeld M. Single dose treatment of diabetic patients by the DP IV inhibitor P32/98.  Diabetes. 2000;  49 (Suppl 1) A102
  • 93 Rothenburg P, Kalbag J, Smith H, Gingerich R, Nedelman J, Villhauer E, McLeod J, Hughes T. Treatment with a DPP-IV inhibitor, NVP-DPP728, increases prandial intact GLP-1 levels and reduces glucose exposure in humans.  Diabetes. 2000;  49 (Suppl 1) A39
  • 94 Ahrén B, Simonsson E, Larsson H, Landin-Olsson M, Torgeirsson H, Jansson P A, Sandqvist M, Båvenholm P, Efendic S, Eriksson J W, Dickinson S, Holmes D. Inhibition of dipeptidyl peptidase IV improves metabolic control over a 4 week study period in type 2 diabetes.  Diabetes Care. 2002;  25 869-875
  • 95 Sörhede Winzell M, Ahrén B. The high-fat fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes.  Diabetes. 2004;  53 (Suppl 3) S215 - 219
  • 96 Ahrén B, Landin-Olsson M, Jansson P A, Svensson M, Holmes D, Schweizer A. Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels and reduces glucagon levels in type 2 diabetes.  J Clin Endocrinol Metab. 2004;  89 2078-2084
  • 97 Ahrén B, Gomis R, Standl E, Mills D, Schweizer A. Twelve- and 52-week efficacy of the dipeptidyl peptidase IV inhibitor LAF237 in metformin-treated patients with type 2 diabetes.  Diabetes Care. 2004;  27 2874-2880
  • 98 Herman G A, Zhao P L, Dietrich B, Golor G, Schrodter A, Keymuelen B, Lasseter K C, Kipnes M S, Hilliard D, Tanen M, de Lepeleire I, Cilissen C, Stevens C, Tanaka W, Gottesdiener K M, Wagner J A. The DP-IV inhibitor MK-0431 enhances GLP-1 and recues glucose following an OGTT in type 2 diabetes.  Diabetes. 2004;  53 A82
  • 99 Zhu L, Tamvakopoulos C, Xie D, Dragovic J, Shen X, Fenyk-Melody J E. Schmidt K, Bagchi A, Griffin PR, Thornberry NA, Sinha Roy R. The role of dopeptidyl peptidase IV in the cleavage of glucagon family peptides: in vivo metabolism of pituitary adenylate cyclase activating polypeptide-(1-38).  J Biol Chem. 2003;  278 22 418-22 423
  • 100 Ahrén B. Autonomic regulation of islet hormone secretion. Implications for health and disease.  Diabetologia. 2000;  43 393-410
  • 101 Hansotia T, Baggio L LK, Delmeire D, Hinke S A, Yamada Y, Tsukiyama K, Seino Y, Holst J J, Schuit F, Drucker D J. Double incretin receptor knockout (DIRKO) mice reveal an essential role for the enteroinsular axis in transducing glucoregulatory actionsof DPP-IV inhibitors.  Diabetes. 2004;  53 1326-1335
  • 102 Caldwyll C G, Chen P, He J, Parmee E R, Leiting B, Marsilio F, Patel R A, Wu J K, Eiermann G J, Petrov A, He H, Lyons K A, Thornberry N A, Weber A E. Fluoropyrrolidine amides as dipeptidyl peptidase IV inhibitors.  Bioorg Med Chem Lett. 2004;  14 1265-1268
  • 103 Lankas G, Leiting B, Roy R S, Eiermann G, Biftu T, Kim D, Ok H, Weber A, Thornberry N A. Inhibition of DPP8/9 results in toxicity in preclinical species: potential importance of selective dipeptidyl peptidase IV inhibition for the treatment of type 2 DM.  Diabetes. 2004;  53 (Suppl 2) A2

Dr. B. Ahrén

Department of Medicine, Lund University

B11 BMC · SE-221 84 Lund · Sweden ·

Phone: + 46 (46) 222 07 58

Email: Bo.Ahren@med.lu.se

    >