Int J Sports Med 2007; 28(4): 287-294
DOI: 10.1055/s-2006-924355
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Ventilatory Thresholds Assessment from Heart Rate Variability during an Incremental Exhaustive Running Test

F. Cottin1 , C. Médigue1 , 2 , P. Lopes1 , P.-M. Leprêtre1 , R. Heubert1 , V. Billat1
  • 1Laboratory of Exercise Physiology (LEPH, E. A. 3872, genopole), Department of Sport and Exercise Science, University of Evry, Evry, France
  • 2French National Institute for Research in Computer Science and Control (INRIA), Le Chesnay, France
Further Information

Publication History

Accepted after revision: May 15, 2006

Publication Date:
06 October 2006 (online)

Abstract

The present study examined whether the ventilatory thresholds during an incremental exhaustive running test could be determined using heart rate variability (HRV) analysis. Beat-to-beat RR interval, V·O2, V·CO2 and V·E of twelve professional soccer players were collected during an incremental test performed on a track until exhaustion. The “smoothed pseudo Wigner-Ville distribution” (SPWVD) time-frequency analysis method was applied to the RR time series to compute the usual HRV components vs. running speed stages. The ventilatory equivalent method was used to assess the ventilatory thresholds (VT1 and VT2) from respiratory components. In addition, ventilatory thresholds were assessed from the instantaneous components of respiratory sinus arrhythmia (RSA) by two different methods: 1) from the high frequency peak of HRV (fHF), and 2) from the product of the spectral power contained within the high frequency band (0.15 Hz to fmax) by fHF (HF · fHF) giving two thresholds: HFT1 and HFT2. Since the relationship between fHF and running speed was linear for all subjects, the VTs could not be determined from fHF. No significant differences were found between respective running speeds at VT1 vs. HFT1 (9.83 ± 1.12 vs. 10.08 ± 1.29 km · h-1, n.s.) nor between the respective running speeds at VT2 vs. HFT2 (12.55 ± 1.31 vs. 12.58 ± 1.33 km · h-1, n.s.). Linear regression analysis showed a strong correlation between VT1 vs. HFT1 (R2 = 0.94, p < 0.001) and VT2 vs. HFT2 (R2 = 0.96, p < 0.001). The Bland-Altman plot analysis reveals that the assessment from RSA gives an accurate estimation of the VTs, with HF · fHF providing a reliable index for the ventilatory thresholds detection. This study has shown that VTs could be assessed during an incremental running test performed on a track using a simple beat-to-beat heart rate monitor, which is less expensive and complex than the classical respiratory measurement devices.

References

  • 1 Ahmaidi S, Hardy J M, Varray A, Collomp K, Mercier J, Prefaut C. Respiratory gas exchange indices used to detect the blood lactate accumulation threshold during an incremental exercise test in young athletes.  Eur J Appl. 1993;  66 31-36
  • 2 Amann M, Subudhi A W, Walker J, Eisenman P, Shultz B, Foster C. An evaluation of the predictive validity and reliability of ventilatory threshold.  Med Sci Sports Exerc. 2004;  36 1716-1722
  • 3 Anosov O, Patzak A, Kononovich Y, Persson P B. High-frequency oscillations of the heart rate during ramp load reflect the human anaerobic threshold.  Eur J Appl Physiol. 2000;  83 388-394
  • 4 Bernasconi P, Kohl J. Analysis of coordination between breathing and exercise rhythms in man.  J Physiol. 1993;  471 693-706
  • 5 Blain G, Meste O, Bouchard T, Bermon S. Assessment of ventilatory thresholds during graded and maximal exercise test using time varying analysis of respiratory sinus arrhythmia.  Br J Sport Med. 2005;  39 448-452
  • 6 Blain G, Meste O, Bermon S. Influences of breathing patterns on respiratory sinus arrhythmia during exercise.  Am J Physiol. 2005;  288 H887-H895
  • 7 Bland J M, Altman D G. Statistical methods for assessing agreement between two methods of clinical measurement.  Lancet. 1986;  1-(8476) 307-310
  • 8 Bonsignore M R, Morici G, Abate P, Romano S, Bonsignore G. Ventilation and entrainment of breathing during cycling and running in triathletes.  Med Sci Sports Exerc. 1998;  30 239-245
  • 9 Casadei B, Moon J, Johnston J, Caiazza A, Sleight P. Is respiratory sinus arrhythmia a good index of cardiac vagal tone in exercise?.  J Appl Physiol. 1996;  81 556-564
  • 10 Clark J M, Hagerman F C, Gefland R. Breathing patterns during submaximal and maximal exercise in elite oarsmen.  J Appl Physiol. 1983;  55 440-446
  • 11 Cottin F, Leprêtre P M, Lopes P, Papelier Y, Médigue C, Billat V L. Assessment of ventilatory thresholds from heart rate variability in well-trained subjects during cycling.  Int J Sports Med. 2006;  27
  • 12 Cottin F, Médigue C, Leprêtre P M, Papelier Y, Koralsztein J P, Billat V L. Heart rate variability and dynamic cardio-respiratory interactions during exercise.  Med Sci Sports Exerc. 2004;  36 594-600
  • 13 Cottin F, Durbin F, Papelier Y. Heart rate variability during cycloergometric exercise or judo wrestling eliciting the same heart rate level.  Eur J Appl Physiol. 2004;  91 177-184
  • 14 Cottin F, Papelier Y, Escourrou P. Effects of exercise load and breathing frequency on heart rate and blood pressure variability during dynamic exercise.  Int J Sports Med. 1999;  20 232-238
  • 15 Durnin J V, Womersley J. Body fat assessment from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged 16 to 76 years.  Br J Nutr. 1974;  32 77-97
  • 16 Gaskill S E, Ruby B C, Walker A J, Sanchez O A, Serfass R C, Leon A S. Validity and reliability of combining three methods to determine ventilatory threshold.  Med Sci Sports Exerc. 2001;  33 (11) 1841-1848
  • 17 Hautala A M, Tulppo M P, Mäkikallio T H, Laukkanen R T, Nissilä S, Huikuri H V. Changes in cardiac autonomic regulation after prolonged maximal exercise.  Clin Physiol. 2001;  21 238-245
  • 18 Iscoe S, Polosa C. Synchronization of respiratory frequency by somatic afferent stimulation.  J Appl Physiol. 1976;  40 138-148
  • 19 James N W, Adams G M, Wilson A F. Determination of anaerobic threshold by ventilatory frequency.  Int J Sports Med. 1989;  10 192-196
  • 20 Kelsey C J, Duffin J. Changes in ventilation in response to ramp changes in treadmill exercise load.  Eur J Appl Physiol. 1992;  65 480-484
  • 21 Kinnunen H, Heikkilä I. The timing accuracy of the Polar Vantage heart rate monitor.  J Sports Sci. 1998;  16 s107-s110
  • 22 Kohl P, Kamkin A G, Kiseleva S, Streubel T. Mechanosensitive cells in the atrium of frog heart.  Exp Physiol. 1992;  77 213-216
  • 23 Lacour J R, Flandrois R. Role of aerobic metabolism in prolonged intensive exercise.  J Physiol. 1977;  73 89-130
  • 24 Leger L A, Lambert J. A maximal multistage 20-m shuttle run test to predict V·O2max.  Eur J Appl Physiol. 1982;  49 1-12
  • 25 Londeree B R. Effect of training on lactate/ventilatory thresholds: a meta-analysis.  Med Sci Sports Exerc. 1997;  29 837-843
  • 26 Loring S H, Mead J, Waggener T B. Determinants of breathing frequency during walking.  Respir Physiol. 1990;  82 177-188
  • 27 Mc Laughlin J E, King G A, Howley E T, Basset D R, Ainsworth B F. Validation of the Cosmed K4b2 portable metabolic system.  Int J Sports Med. 2001;  22 280-284
  • 28 Monti A, Médigue C, Mangin L. Instantaneous parameter estimation in cardiovascular time series by harmonic and time-frequency analysis.  IEEE Trans Biomed Eng. 2002;  49 1547-1556
  • 29 Perlini S, Solda P L, Piepoli M, Sala-Gallini G, Calciati A, Finardi G, Bernardi L. Determinants of respiratory sinus arrhythmia in the vagotomized rabbit.  Am J Physiol. 1995;  269 H909-H915
  • 30 Prabbhu B, Zintel T, Marciniuk R, Clemens R, Gallagher C G. Lack of effect of pedaling frequency on breathing pattern during bicycle ergometry.  An Rev Respir Dis. 1992;  145 A582
  • 31 Pyne D B, Boston T, Martin D T, Logan A. Evaluation of the Lactate Pro blood lactate analyser.  Eur J Appl Physiol. 2000;  82 112-116
  • 32 Reinhard U, Muller P H, Schmulling R M. Determination of anaerobic threshold by the ventilation equivalent in normal individuals.  Respiration. 1979;  38 36-42
  • 33 Rowell L B. Human Cardiovascular Control. New York; Oxford University Press 1993: 42-43
  • 34 Ruha A, Sallinen S, Nissilä S. A real-time microprocessor QRS detector system with a 1-ms timing accuracy for the measurement of ambulatory HRV.  IEEE Trans Biomed Eng. 1997;  44 159-167
  • 35 Schepens B, Willems P A, Cavagna G A, Heglund N C. Mechanical power and efficiency in running children.  Pflugers Arch. 2001;  442 107-116
  • 36 Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology . Heart rate variability. standards of measurement, physiological interpretation, and clinical use.  Circul. 1996;  93 1043-1065
  • 37 Tulppo M P, Mäkikallio T H, Takala T ES, Seppänen T, Huikuri H V. Quantitative beat-to-beat analysis of heart rate dynamics during exercise.  Am J Physiol. 1996;  271 H244-H252
  • 38 Wasserman K, Whipp B J, Koyal S N, Beaver W L. Anaerobic threshold and respiratory gas exchange during exercise.  J Appl Physiol. 1973;  35 236-243
  • 39 Wasserman K, Mc Ilroy M B. Detecting the threshold of anaerobic metabolism in cardiac patients during exercise.  Am J Cardiol. 1964;  14 844-852
  • 40 Williams K R. Biomechanics of running.  Exerc Sport Sci Rev. 1985;  13 389-441
  • 41 Yamamoto Y, Hughson R L, Nakamura Y. Autonomic nervous system responses to exercise in relation to ventilatory threshold.  Chest. 1992;  101 206S-210S
  • 42 Yamamoto Y, Hughson R L, Peterson J C. Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis.  J Appl Physiol. 1991;  71 1136-1142

Ph.D. François Cottin

Department of Sport and Exercise Science
University of Evry

Boulevard F. Mitterrand

91025 Evry Cedex

France

Phone: + 33 1 69 64 48 81

Fax: + 33 1 69 64 48 95

Email: fcottin@univ-evry.fr

    >