Semin Respir Crit Care Med 2008; 29(1): 090-099
DOI: 10.1055/s-2008-1047567
© Thieme Medical Publishers

The Future of Anticoagulation

Debra A. Hoppensteadt1 , Walter Jeske2 , Jeanine Walenga2 , Jawed Fareed1 , Hemostasis and Thrombosis Research Laboratories, Loyola University Chicago3
  • 1Department of Pathology, Loyola University Chicago, Maywood, Illinois
  • 2Department of Thoracic and Cardiovascular Surgery, Loyola University Chicago, Maywood, Illinois
  • 3Loyola University Medical Center, Maywood, Illinois
Further Information

Publication History

Publication Date:
26 March 2008 (online)

ABSTRACT

The conventional management of thrombotic disorders is based on the use of heparin, oral anticoagulants, and aspirin. The development of low molecular weight heparins and the synthesis of heparinomimetics such as the chemically synthesized pentasaccharide represent a refined use of heparin. Aspirin still remains the lead drug in the management of thrombotic and cardiovascular disorders. The newer antiplatelet drugs such as the adenosine diphosphate receptor inhibitors, glycoprotein IIb/IIIa (GPIIb/IIIa) inhibitors and other specific inhibitors have limited effects and have been tested in patients who have already been treated with aspirin. The oral anticoagulants such as warfarin provide a convenient and affordable approach in the long-term outpatient management of thrombotic disorders. The optimized use of these drugs still remains the approach of choice to manage thrombotic disorders. The new anticoagulant drugs target specific sites in the hemostatic network. There is a major thrust on the development of orally bioavailable anticoagulant drugs to replace oral anticoagulants. Heparin and low molecular weight heparins have been considered with various chemical enhancers for absorption. Both the factor Xa and antithrombin agents have been developed for oral use and some of these agents are in clinical development. Besides the limited bioavailability, the therapeutic indices of some of these drugs have been rather disappointing. Factor Xa inhibitors such as the pentasaccharides have undergone aggressive clinical development. The newer antiplatelet drugs have added a new dimension in the management of thrombotic disorders. The newer drugs are attractive for several reasons; however, none of these are expected to completely replace the conventional drugs in polytherapeutic approaches. It is conceivable that some of the newer drugs in combined modalities may mimic the broad therapeutic spectrum of heparins and warfarin. However, clinical validation is required for the therapeutic interchange for specific indications.

REFERENCES

  • 1 Fareed J, Lewis B E, Callas D D et al.. Antithrombin agents: the new class of anticoagulant and antithrombin drug.  Clin Appl Thromb Hemost. 1999;  5(Suppl 1) S45-S55
  • 2 Fareed J, Haas S, Sasahara A. Differentiation of low molecular weight heparins: applied and clinical considerations.  Semin Thromb Hemost. 1999;  25(Suppl 3) 1-47
  • 3 Fareed J, Messmore H L. Clopidogrel, a new ADP receptor antagonist: clinical development.  Semin Thromb Hemost.. 1999;  25(Suppl 2) 1-84
  • 4 Fareed J, Walenga J M, Hoppensteadt D, Kaiser B, Jeske W. Factor Xa inhibitors in the control of thrombogenesis.  Hämostaseologie. 1999;  19 55-62
  • 5 Bick R L, Fareed J. Low molecular weight heparins: differences and similarities in approved preparations in the United States.  Clin Appl Thromb Hemost. 1999;  5(Suppl 1) S63-S66
  • 6 Fareed J, Hoppensteadt D. The management of thrombotic and cardiovascular disorders in the 21st century. In: Sasahara AA, Loscalzo J New Therapeutic Agents in Thrombosis and Thrombolysis. New York; Marcel Dekker 2005: 687-693
  • 7 Albers G W, Amarenco P, Easton J D et al.. Antithrombotic and thrombolytic therapy for ischemic stroke: the seventh ACCP conference on antithrombotic and thrombolytic therapy.  Chest. 2004;  126(Suppl 3) 483S-512S
  • 8 Harrington R A, Becker R C, Ezekowitz M et al.. Antithrombotic therapy for coronary artery disease: the seventh ACCP conference on antithrombotic and thrombolytic therapy.  Chest. 2004;  126(Suppl 3) 513S-548S
  • 9 Popma J J, Berger P, Ohman E M et al.. Antithrombotic therapy during percutaneous coronary intervention: the seventh ACCP conference on antithrombotic and thrombolytic therapy.  Chest. 2004;  126(Suppl 3) 576S-599S
  • 10 Geerts W H, Pineo G F, Heit J A et al.. Prevention of venous thromboembolism: the seventh ACCP conference on antithrombotic and thrombolytic therapy.  Chest. 2004;  126(Suppl 3) 338S-400S
  • 11 Fenton J W. Regulation of thrombin generation and functions.  Semin Thromb Hemost. 1988;  14 234-240
  • 12 Di Nisio M, Middeldorp S, Buller H R. Direct thrombin inhibitors.  N Engl J Med. 2005;  353 1028-1040
  • 13 Saiah E, Soares C. Small molecule coagulation cascade inhibitors in the clinic.  Curr Top Med Chem. 2005;  5 1677-1695
  • 14 Lubenow N, Eichler P, Lietz T et al.. Lepirudin for prophylaxis of thrombosis in patients with acute isolated heparin-induced thrombocytopenia: an analysis of 3 prospective studies.  Blood. 2004;  104 3072-3077
  • 15 Lewis B E, Wallis D E, Berkowitz S D et al.. Argatroban anticoagulant therapy in patients with heparin-induced thrombocytopenia.  Circulation. 2001;  103 1838-1843
  • 16 Lewis B E, Wallis D E, Leya F et al.. Argatroban anticoagulation in patients with heparin-induced thrombocytopenia.  Arch Intern Med. 2003;  163 1849-1856
  • 17 Eriksson B I, Wille-Jorgensen P, Kalebo P et al.. A comparison of recombinant hirudin with low-molecular-weight heparin to prevent thromboembolic complications after total hip replacement.  N Engl J Med. 1997;  337 1329-1335
  • 18 Eriksson B I, Ekman S, Lindbratt S et al.. Prevention of thromboembolism with use of recombinant hirudin: results of a double blind, multicenter trial comparing the efficacy of desirudin (Revasc) with that of unfractionated heparin in patients having a total hip replacement.  J Bone Joint Surg Am. 1997;  79 326-333
  • 19 Carswell C I, Plosker G L. Bivalirudin: a review of its potential place in the management of acute coronary syndromes.  Drugs. 2002;  62 841-870
  • 20 Ahrens I, Smith B K, Bode C, Peter K. Direct thrombin inhibition with bivalirudin as an antithrombotic strategy in general and interventional cardiology.  Expert Opin Drug Metab Toxicol. 2007;  3 609-620
  • 21 Carswell C I, Plosker G L. Bivalirudin: a review of its potential place in the management of acute coronary syndromes.  Drugs. 2002;  62 841-870
  • 22 Dyke C M, Aldea G, Koster A et al.. Off-pump coronary artery bypass with bivalirudin for patients with heparin-induced thrombocytopenia or antiplatelet factor four/heparin antibodies.  Ann Thorac Surg. 2007;  84 836-839
  • 23 Pappalardo F, Franco A, Crescenzi G et al.. Successful use of bivalirudin for cardiopulmonary bypass in a patient with heparin allergy.  Perfusion. 2007;  22 67-69
  • 24 Leone G, Rossi E, Leone A M, De Stefano V. Novel antithrombotic agents: indirect synthetic inhibitors of factor Xa and direct thrombin inhibitors: evidences from clinical studies.  Curr Med Chem Cardiovasc Hematol Agents. 2004;  2 311-326
  • 25 Bauer K A. New anticoagulants.  Hematology Am Soc Hematol Educ Program. 2006;  450-456
  • 26 LaMonte M P, Nash M L, Wang D Z et al.. Argatroban anticoagulation in patients with acute ischemic stroke (ARGIS-1): a randomized, placebo-controlled safety study.  Stroke. 2004;  35 1677-1682
  • 27 Eriksson B I, Dahl O E, Buller H et al.. A new oral direct thrombin inhibitor, dabigatran etexilate, compared with enoxaparin for prevention of thromboembolic events following total hip or knee replacement: the BISTRO II randomized trial.  J Thromb Haemost. 2005;  3 103-111
  • 28 Samama M M, Walenga J, Kaiser B, Fareed J. Specific factor Xa inhibitors. In: Verstraete M, Fuster V, Topol E Cardiovascular Thrombosis: Thrombocardiology. Brussels; Lippincott-Raven 1997: 173-188
  • 29 Weitz J I, Hirsh J. New antithronbotic agents.  Chest. 2001;  119 95S-107S
  • 30 Walenga J M, Jeske W P, Samama M M et al.. Fondaparinux: a synthetic heparin pentasaccharide as a new antithrombotic agent.  Expert Opin Investig Drugs. 2002;  11 397-407
  • 31 Lassen M R, Bauer K A, Eriksson B I et al.. Postoperative fondaparinux versus preoperative enoxaparin for the prevention of venous thromboembolism in elective hip-replacement surgery: a randomized double-blind comparison.  Lancet. 2002;  359 1715-1720
  • 32 Turpie A GG, Bauer K A, Erikkson B I et al.. Postoperative fondaparinux versus preoperative enoxaparin for the prevention of venous thromboembolism in elective hip-replacement surgery: a randomized double-blind comparison.  Lancet. 2002;  359 1721-1726
  • 33 Bauer K A, Eriksson B I, Lassen M R et al.. Fondaparinux compared with enoxaparin for the prevention of venous thromboembolism after elective major knee surgery.  N Engl J Med. 2001;  345 1305-1310
  • 34 Eriksson B I, Bauer K A, Lassen M R et al.. Fondaparinux compared with enoxaparin for the prevention of venous thromboembolism after hip-fracture surgery.  N Engl J Med. 2001;  345 1298-1304
  • 35 Buller H R, Davidson B L, Decousus H et al.. Fondaparinux or enoxaparin for the initial treatment of symptomatic deep venous thrombosis: a randomized trial.  Ann Intern Med. 2004;  140 867-873
  • 36 Buller H R, Davidson B L, Decousus H et al.. Subcutaneous fondaparinux versus intravenous unfractionated heparin in the initial treatment of pulmonary embolism.  N Engl J Med. 2003;  349 1695-1702
  • 37 Simoons M L, Bobbink I W, Boland J et al.. A dose-finding study of fondaparinux in patients with non-ST-segment elevation in acute coronary syndromes. The Pentasaccharide in Unstable Angina (PENTUA) Study.  J Am Coll Cardiol. 2004;  43 2183-2190
  • 38 Yusuf S, Mehta S R, Chrolavicius S et al.. Comparison of fondaparinux with enoxaparin in acute coronary syndromes.  N Engl J Med. 2006;  354 1464-1476
  • 39 Herbert J M, Heravlet J P, Bernat A et al.. Biochemical and pharmacologic properties of SanOrg 34006, a potent and long-acting synthetic pentasaccharide.  Blood. 1998;  91 4197-4205
  • 40 PERSIST Investigators . A novel, long-acting synthetic factor Xa inhibitor (SanOrg 34006) to replace warfarin for secondary prevention in deep vein thrombosis: a phase II evaluation.  J Thromb Haemost. 2004;  2 47-53
  • 41 Murayama T, Tanaka M, Kunitada S et al.. Tolerability, pharmacokinetics and pharmacodynamics of DX-9065a, a new synthetic potent anticoagulant and specific factor Xa inhibitor, in healthy male volunteers.  Clin Pharmacol Ther. 1999;  66 258-264
  • 42 Dyke C K, Becker R C, Kleiman N S et al.. First experience with direct factor Xa inhibition in patients with stable coronary disease: a pharmacokinetic and pharmacodynamic evaluation.  Circulation. 2002;  105(20) 2385-2391
  • 43 Turpie A G, Fisher W D, Bauer K A et al.. BAY 59-7939: an oral, direct factor Xa inhibitor for the prevention of venous thromboembolism in patients after total knee replacement: a phase II dose-ranging study.  J Thromb Haemost. 2005;  3 2479-2486
  • 44 Erikkson B I, Borris L, Dahl O E et al.. Oral, direct factor Xa inhibition with Bay 59-7939 for the prevention of venous thromboembolism after total hip replacement.  J Thromb Haemost. 2006;  4 121-128
  • 45 Lee W M, Larrey D, Olsson R et al.. Hepatic findings in long term clinical trials of ximelagatran.  Drug Saf. 2005;  28 351-370

Debra A HoppensteadtPh.D. 

Department of Pathology, Loyola University Chicago

2160 S. First Ave., Maywood, IL 60153

Email: dhoppen@lumc.edu

    >