Planta Med 2008; 74(13): 1560-1569
DOI: 10.1055/s-2008-1074578
Review
© Georg Thieme Verlag KG Stuttgart · New York

Potential of Spice-Derived Phytochemicals for Cancer Prevention

Bharat B. Aggarwal1 , Ajaikumar B. Kunnumakkara1 , Kuzhuvelil B. Harikumar1 , Sheeja T. Tharakan1 , Bokyung Sung1 , Preetha Anand1
  • 1Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
Further Information

Publication History

Received: April 10, 2008

Accepted: May 6, 2008

Publication Date:
08 July 2008 (online)

Abstract

Although spices have been used for thousands of years and are known for their flavor, taste and color in the food, they are not usually recognized for their medicinal value. Extensive research within the last two decades from our laboratory and others has indicated that there are phytochemicals present in spices that may prevent various chronic illnesses including cancerous, diabetic, cardiovascular, pulmonary, neurological and autoimmune diseases. For instance, the potential of turmeric (curcumin), red chilli (capsaicin), cloves (eugenol), ginger (zerumbone), fennel (anethole), kokum (gambogic acid), fenugreek (diosgenin), and black cumin (thymoquinone) in cancer prevention has been established. Additionally, the mechanism by which these agents mediate anticancer effects is also becoming increasingly evident. The current review describes the active components of some of the major spices, their mechanisms of action and their potential in cancer prevention.

Abbreviations

ADT:anethole ditholethione

Bcl-3:B cell lymphoma protein-3

CDK7:cyclin-dependent kinase 7

cIAP:inhibitor of apoptosis

COX-2:cyclooxygenase-2

DNA:deoxyribonucleic acid

EGF:epidermal growth factor

ELAM-1:endothelial leukocyte adhesion molecule-1

ERK or Erk:extracellular signal-regulated kinases

GA:gambogic acid

GSH:glutathione

GST:glutathione S-transferase

H2O2:hydrogen peroxide

hTERT:human telomerase reverse transcriptase

ICAM-1:intercellular adhesion molecule-1

IKK:IκBα kinase

IL:interleukins

JAK:Janus kinases

5-LOX:5-lipoxygenase

MM:multiple myeloma

MMP:matrix metalloproteinase

NADH:nicotinamide adenine dinucleotide hydride

NF-κB:nuclear factor kappa B

NIK:NF-κB inducing kinase

NNK:nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone

RANKL:receptor activator for nuclear factor κB ligand

RHD:Rel homology domain

RTX:resiniferatoxin

STAT:signal transducer and activator of transcription

TNF:tumor necrosis factor

TNFR:TNF receptor

TQ:thymoquinone

TRAF:TNF receptor associated factor

uPA:urokinase plasminogen activator

VCAM:vascular cell adhesion molecule

VEGF:vascular endothelial growth factor

VEGFR2:VEGF receptor 2

References

  • 1 Aggarwal B B, Shishodia S, Sandur S K, Pandey M K, Sethi G. Inflammation and cancer: how hot is the link?.  Biochem Pharmacol. 2006;  72 1605-21
  • 2 Aggarwal B B. Nuclear factor-kappaB: the enemy within.  Cancer Cell. 2004;  6 203-8
  • 3 Aggarwal B B, Sethi G, Ahn K S, Sandur S K, Pandey M K, Kunnumakkara A B. et al . Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution.  Ann N Y Acad Sci. 2006;  1091 151-69
  • 4 Aggarwal B B, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer.  Biochem Pharmacol. 2006;  71 1397-421
  • 5 Morre D J, Chueh P J, Morre D M. Capsaicin inhibits preferentially the NADH oxidase and growth of transformed cells in culture.  Proc Natl Acad Sci U S A. 1995;  92 1831-5
  • 6 Morre D J, Sun E, Geilen C, Wu L Y, de Cabo R, Krasagakis K. et al . Capsaicin inhibits plasma membrane NADH oxidase and growth of human and mouse melanoma lines.  Eur J Cancer. 1996;  32A 1995-2003
  • 7 Kang S N, Chung S W, Kim T S. Capsaicin potentiates 1,25-dihydoxyvitamin D3- and all-trans-retinoic acid-induced differentiation of human promyelocytic leukemia HL-60 cells.  Eur J Pharmacol. 2001;  420 83-90
  • 8 Zhang J, Nagasaki M, Tanaka Y, Morikawa S. Capsaicin inhibits growth of adult T-cell leukemia cells.  Leuk Res. 2003;  27 275-83
  • 9 Zhang H Z, Kasibhatla S, Wang Y, Herich J, Guastella J, Tseng B. et al . Discovery, characterization and SAR of gambogic acid as a potent apoptosis inducer by a HTS assay.  Bioorg Med Chem. 2004;  12 309-17
  • 10 Kim J D, Kim J M, Pyo J O, Kim S Y, Kim B S, Yu R. et al . Capsaicin can alter the expression of tumor forming-related genes which might be followed by induction of apoptosis of a Korean stomach cancer cell line, SNU-1.  Cancer Lett. 1997;  120 235-41
  • 11 Jung M Y, Kang H J, Moon A. Capsaicin-induced apoptosis in SK-Hep-1 hepatocarcinoma cells involves Bcl-2 downregulation and caspase-3 activation.  Cancer Lett. 2001;  165 139-45
  • 12 Qiao S, Li W, Tsubouchi R, Haneda M, Murakami K, Yoshino M. Involvement of peroxynitrite in capsaicin-induced apoptosis of C6 glioma cells.  Neurosci Res. 2005;  51 175-83
  • 13 Mori A, Lehmann S, O′Kelly J, Kumagai T, Desmond J C, Pervan M. et al . Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells.  Cancer Res. 2006;  66 3222-9
  • 14 Singh S, Natarajan K, Aggarwal B B. Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is a potent inhibitor of nuclear transcription factor-kappa B activation by diverse agents.  J Immunol. 1996;  157 4412-20
  • 15 Bhutani M, Pathak A K, Nair A S, Kunnumakkara A B, Guha S, Sethi G. et al . Capsaicin is a novel blocker of constitutive and interleukin-6-inducible STAT3 activation.  Clin Cancer Res. 2007;  13 3024-32
  • 16 Skrzypczak-Jankun E, Zhou K, McCabe N P, Selman S H, Jankun J. Structure of curcumin in complex with lipoxygenase and its significance in cancer.  Int J Mol Med. 2003;  12 17-24
  • 17 Aggarwal B B, Kumar A, Bharti A C. Anticancer potential of curcumin: preclinical and clinical studies.  Anticancer Res. 2003;  23 363-98
  • 18 Goel A, Kunnumakkara A B, Aggarwal B B. Curcumin as ”Curecumin”: from kitchen to clinic.  Biochem Pharmacol. 2008;  75 787-809
  • 19 Singh S, Aggarwal B B. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected].  J Biol Chem. 1995;  270 24 995-5000
  • 20 Bharti A C, Donato N, Aggarwal B B. Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells.  J Immunol. 2003;  171 3863-71
  • 21 Drukarch B, Schepens E, Stoof J C, Langeveld C H. Anethole dithiolethione prevents oxidative damage in glutathione-depleted astrocytes.  Eur J Pharmacol. 1997;  329 259-62
  • 22 Rompelberg C J, Verhagen H, van Bladeren P J. Effects of the naturally occurring alkenylbenzenes eugenol and trans-anethole on drug-metabolizing enzymes in the rat liver.  Food Chem Toxicol. 1993;  31 637-45
  • 23 Bouthillier L, Charbonneau M, Brodeur J. Assessment of the role of glutathione conjugation in the protection afforded by anethol dithiolthione against hexachloro-1,3-butadiene-induced nephrotoxicity.  Toxicol Appl Pharmacol. 1996;  139 177-85
  • 24 Stohs S J, Lawson T A, Anderson L, Bueding E. Effects of oltipraz, BHA, ADT and cabbage on glutathione metabolism, DNA damage and lipid peroxidation in old mice.  Mech Ageing Dev. 1986;  37 137-45
  • 25 Rajakumar D V, Rao M N. Dehydrozingerone and isoeugenol as inhibitors of lipid peroxidation and as free radical scavengers.  Biochem Pharmacol. 1993;  46 2067-72
  • 26 Ko F N, Liao C H, Kuo Y N, Lin Y L. Antioxidant properties of demethyldiisoeugenol.  Biochim Biophys Acta. 1995;  1258 145-52
  • 27 Nagababu E, Lakshmaiah N. Inhibition of microsomal lipid peroxidation and monooxygenase activities by eugenol.  Free Radic Res. 1994;  20 253-66
  • 28 Mansuy D, Sassi A, Dansette P M, Plat M. A new potent inhibitor of lipid peroxidation in vitro and in vivo, the hepatoprotective drug anisyldithiolthione.  Biochem Biophys Res Commun. 1986;  135 1015-21
  • 29 Taira J, Ikemoto T, Yoneya T, Hagi A, Murakami A, Makino K. Essential oil phenyl propanoids.  Useful as .OH scavengers? Free Radic Res Commun. 1992;  16 197-204
  • 30 Naidu K A. Eugenol – an inhibitor of lipoxygenase-dependent lipid peroxidation.  Prostaglandins Leukot Essent Fatty Acids. 1995;  53 381-3
  • 31 Sharma J N, Srivastava K C, Gan E K. Suppressive effects of eugenol and ginger oil on arthritic rats.  Pharmacology. 1994;  49 314-8
  • 32 Reddy B S, Rao C V, Rivenson A, Kelloff G. Chemoprevention of colon carcinogenesis by organosulfur compounds.  Cancer Res. 1993;  53 3493-8
  • 33 Reddy B S. Chemoprevention of colon cancer by minor dietary constituents and their synthetic analogues.  Prev Med. 1996;  25 48-50
  • 34 Reddy B S. Chemoprevention of colon cancer by dietary administration of naturally-occurring and related synthetic agents.  Adv Exp Med Biol. 1997;  400B 931-6
  • 35 Lubet R A, Steele V E, Eto I, Juliana M M, Kelloff G J, Grubbs C J. Chemopreventive efficacy of anethole trithione, N-acetyl-L-cysteine, miconazole and phenethyl isothiocyanate in the DMBA-induced rat mammary cancer model.  Int J Cancer. 1997;  72 95-101
  • 36 al-Harbi M M, Qureshi S, Raza M, Ahmed M M, Giangreco A B, Shah A H. Influence of anethole treatment on the tumour induced by Ehrlich ascites carcinoma cells in paw of Swiss albino mice.  Eur J Cancer Prev. 1995;  4 307-18
  • 37 Chainy G B, Manna S K, Chaturvedi M M, Aggarwal B B. Anethole blocks both early and late cellular responses transduced by tumor necrosis factor: effect on NF-kappaB, AP-1, JNK, MAPKK and apoptosis.  Oncogene. 2000;  19 2943-50
  • 38 Kitayama T, Okamoto T, Hill R K, Kawai Y, Takahashi S, Yonemori S. et al . Chemistry of zerumbone. 1. Simplified isolation, conjugate addition reactions, and a unique ring contracting transannular reaction of its dibromide.  J Org Chem. 1999;  64 2667-72
  • 39 Ozaki Y, Kawahara N, Harada M. Anti-inflammatory effect of Zingiber cassumunar Roxb. and its active principles.  Chem Pharm Bull (Tokyo). 1991;  39 2353-6
  • 40 Murakami A, Takahashi M, Jiwajinda S, Koshimizu K, Ohigashi H. Identification of zerumbone in Zingiber zerumbet Smith as a potent inhibitor of 12-O-tetradecanoylphorbol 13-acetate-induced Epstein-Barr virus activation.  Biosci Biotechnol Biochem. 1999;  63 1811-2
  • 41 Murakami A, Takahashi D, Kinoshita T, Koshimizu K, Kim H W, Yoshihiro A. et al . Zerumbone, a Southeast Asian ginger sesquiterpene, markedly suppresses free radical generation, proinflammatory protein production, and cancer cell proliferation accompanied by apoptosis: the alpha,beta-unsaturated carbonyl group is a prerequisite.  Carcinogenesis. 2002;  23 795-802
  • 42 Murakami A, Hayashi R, Tanaka T, Kwon K H, Ohigashi H, Safitri R. Suppression of dextran sodium sulfate-induced colitis in mice by zerumbone, a subtropical ginger sesquiterpene, and nimesulide: separately and in combination.  Biochem Pharmacol. 2003;  66 1253-61
  • 43 Murakami A, Tanaka T, Lee J Y, Surh Y J, Kim H W, Kawabata K. et al . Zerumbone, a sesquiterpene in subtropical ginger, suppresses skin tumor initiation and promotion stages in ICR mice.  Int J Cancer. 2004;  110 481-90
  • 44 Tanaka T, Shimizu M, Kohno H, Yoshitani S, Tsukio Y, Murakami A. et al . Chemoprevention of azoxymethane-induced rat aberrant crypt foci by dietary zerumbone isolated from Zingiber zerumbet.  Life Sci. 2001;  69 1935-45
  • 45 Kirana C, McIntosh G H, Record I R, Jones G P. Antitumor activity of extract of Zingiber aromaticum and its bioactive sesquiterpenoid zerumbone.  Nutr Cancer. 2003;  45 218-25
  • 46 Murakami A, Takahashi D, Koshimizu K, Ohigashi H. Synergistic suppression of superoxide and nitric oxide generation from inflammatory cells by combined food factors.  Mutat Res. 2003;  523 – 524 151-61
  • 47 Murakami A, Matsumoto K, Koshimizu K, Ohigashi H. Effects of selected food factors with chemopreventive properties on combined lipopolysaccharide- and interferon-gamma-induced IkappaB degradation in RAW264.7 macrophages.  Cancer Lett. 2003;  195 17-25
  • 48 Takada Y, Murakami A, Aggarwal B B. Zerumbone abolishes NF-kappaB and IkappaBalpha kinase activation leading to suppression of antiapoptotic and metastatic gene expression, upregulation of apoptosis, and downregulation of invasion.  Oncogene. 2005;  24 6957-69
  • 49 Puri H S, Jefferies T M, Hardman R. Diosgenin and yamogenin levels in some Indian plant samples.  Planta Med. 1976;  30 118-21
  • 50 Djerassi C. Drugs from Third World plants: the future.  Science. 1992;  258 203-4
  • 51 Segal R, Milo-Goldzweig I, Zaitschek D V. Diosgenin and yomogenin from Solanum incanum.  Lloydia. 1977;  40 604
  • 52 Dasgupta B, Pandey V B. A new Indian source of diosgenin (Costus speciosus).  Experientia. 1970;  26 475-6
  • 53 Heble M R, Narayanaswami S, Chadha M S. Diosgenin and beta-sitosterol: isolation from solanum xanthocarpum tissue cultures.  Science. 1967;  161 1145
  • 54 Madar Z, Abel R, Samish S, Arad J. Glucose-lowering effect of fenugreek in non-insulin dependent diabetics.  Eur J Clin Nutr. 1988;  42 51-4
  • 55 Sharma R D, Raghuram T C, Rao N S. Effect of fenugreek seeds on blood glucose and serum lipids in type I diabetes.  Eur J Clin Nutr. 1990;  44 301-6
  • 56 Gupta A, Gupta R, Lal B. Effect of Trigonella foenum-graecum (fenugreek) seeds on glycaemic control and insulin resistance in type 2 diabetes mellitus: a double blind placebo controlled study.  J Assoc Physicians India. 2001;  49 1057-61
  • 57 Valette G, Sauvaire Y, Baccou J C, Ribes G. Hypocholesterolaemic effect of fenugreek seeds in dogs.  Atherosclerosis. 1984;  50 105-11
  • 58 Sauvaire Y, Ribes G, Baccou J C, Loubatieeres-Mariani M M. Implication of steroid saponins and sapogenins in the hypocholesterolemic effect of fenugreek.  Lipids. 1991;  26 191-7
  • 59 Pandian R S, Anuradha C V, Viswanathan P. Gastroprotective effect of fenugreek seeds (Trigonella foenum-graecum) on experimental gastric ulcer in rats.  J Ethnopharmacol. 2002;  81 393-7
  • 60 Raju J, Patlolla J M, Swamy M V, Rao C V. Diosgenin, a steroid saponin of Trigonella foenum-graecum (Fenugreek), inhibits azoxymethane-induced aberrant crypt foci formation in F344 rats and induces apoptosis in HT-29 human colon cancer cells.  Cancer Epidemiol Biomarkers Prev. 2004;  13 1392-8
  • 61 Wang S L, Cai B, Cui C B, Liu H W, Wu C F, Yao X S. Diosgenin-3-O-alpha-L-rhamnopyranosyl-(1→4)-beta-D-glucopyranoside obtained as a new anticancer agent from Dioscorea futschauensis induces apoptosis on human colon carcinoma HCT-15 cells via mitochondria-controlled apoptotic pathway.  J Asian Nat Prod Res. 2004;  6 115-25
  • 62 Moalic S, Liagre B, Corbiere C, Bianchi A, Dauca M, Bordji K. et al . A plant steroid, diosgenin, induces apoptosis, cell cycle arrest and COX activity in osteosarcoma cells.  FEBS Lett. 2001;  506 225-30
  • 63 Corbiere C, Liagre B, Bianchi A, Bordji K, Dauca M, Netter P. et al . Different contribution of apoptosis to the antiproliferative effects of diosgenin and other plant steroids, hecogenin and tigogenin, on human 1547 osteosarcoma cells.  Int J Oncol. 2003;  22 899-905
  • 64 Hibasami H, Moteki H, Ishikawa K, Katsuzaki H, Imai K, Yoshioka K. et al . Protodioscin isolated from fenugreek (Trigonella foenum-graecum L.) induces cell death and morphological change indicative of apoptosis in leukemic cell line H-60, but not in gastric cancer cell line KATO III.  Int J Mol Med. 2003;  11 23-6
  • 65 Liu M J, Wang Z, Ju Y, Wong R N, Wu Q Y. Diosgenin induces cell cycle arrest and apoptosis in human leukemia K562 cells with the disruption of Ca2+ homeostasis.  Cancer Chemother Pharmacol. 2005;  55 79-90
  • 66 Leger D Y, Liagre B, Corbiere C, Cook-Moreau J, Beneytout J L. Diosgenin induces cell cycle arrest and apoptosis in HEL cells with increase in intracellular calcium level, activation of cPLA2 and COX-2 overexpression.  Int J Oncol. 2004;  25 555-62
  • 67 Liagre B, Vergne-Salle P, Corbiere C, Charissoux J L, Beneytout J L. Diosgenin, a plant steroid, induces apoptosis in human rheumatoid arthritis synoviocytes with cyclooxygenase-2 overexpression.  Arthritis Res Ther. 2004;  6 R373-83
  • 68 Corbiere C, Liagre B, Terro F, Beneytout J L. Induction of antiproliferative effect by diosgenin through activation of p53, release of apoptosis-inducing factor (AIF) and modulation of caspase-3 activity in different human cancer cells.  Cell Res. 2004;  14 188-96
  • 69 Yamada T, Hoshino M, Hayakawa T, Ohhara H, Yamada H, Nakazawa T. et al . Dietary diosgenin attenuates subacute intestinal inflammation associated with indomethacin in rats.  Am J Physiol. 1997;  273 355-64
  • 70 Nappez C, Liagre B, Beneytout J L. Changes in lipoxygenase activities in human erythroleukemia (HEL) cells during diosgenin-induced differentiation.  Cancer Lett. 1995;  96 133-40
  • 71 Ondeykal J G, Herath K B, Jayasuriya H, Polishook J D, Bills G F, Dombrowski A W. et al . Discovery of structurally diverse natural product antagonists of chemokine receptor CXCR3.  Mol Divers. 2005;  9 123-9
  • 72 Shishodia S, Aggarwal B B. Diosgenin inhibits osteoclastogenesis, invasion, and proliferation through the downregulation of Akt, I kappa B kinase activation and NF-kappa B-regulated gene expression.  Oncogene. 2006;  25 1463-73
  • 73 Guo Q L, Lin S S, You Q D, Gu H Y, Yu J, Zhao L. et al . Inhibition of human telomerase reverse transcriptase gene expression by gambogic acid in human hepatoma SMMC-7721 cells.  Life Sci. 2006;  78 1238-45
  • 74 Zhao L, Guo Q L, You Q D, Wu Z Q, Gu H Y. Gambogic acid induces apoptosis and regulates expressions of Bax and Bcl-2 protein in human gastric carcinoma MGC-803 cells.  Biol Pharm Bull. 2004;  27 998-1003
  • 75 Guo Q L, You Q D, Zhao L, Gu H Y, Yuan S T. Anticancer effect and apoptosis induction of gambogic acid in human gastric cancer line BGC-823.  World J Gastroenterol. 2005;  11 3655-9
  • 76 Yu J, Guo Q L, You Q D, Lin S S, Li Z, Gu H Y. et al . Repression of telomerase reverse transcriptase mRNA and hTERT promoter by gambogic acid in human gastric carcinoma cells.  Cancer Chemother Pharmacol. 2006;  58 434-43
  • 77 Yu J, Guo Q L, You Q D, Zhao L, Gu H Y, Yang Y. et al . Gambogic acid-induced G2/M phase cell-cycle arrest via disturbing CDK7-mediated phosphorylation of CDC2/p34 in human gastric carcinoma BGC-823 cells.  Carcinogenesis. 2007;  28 632-8
  • 78 Wu Z Q, Guo Q L, You Q , Zhao L, Gu H Y. Gambogic acid inhibits proliferation of human lung carcinoma SPC-A1 cells in vivo and in vitro and represses telomerase activity and telomerase reverse transcriptase mRNA expression in the cells.  Biol Pharm Bull. 2004;  27 1769-174
  • 79 Kasibhatla S, Essen K A, Maliartchouk S, JWang J Y, English N M, Drewe J. et al . A role for transferrin receptor in triggering apoptosis when targeted with gambogic acid.  Proc Natl Acad Sci U S A. 2005;  102 12 095-100
  • 80 Pandey M K, Sung B, Ahn K S, Kunnumakkara A B, Chaturvedi M M, Aggarwal B B. Gambogic acid, a novel ligand for transferrin receptor, potentiates TNF-induced apoptosis through modulation of the nuclear factor-kappaB signaling pathway.  Blood. 2007;  110 3517-25
  • 81 Yi T, Yi Z, Cho S G, Luo J, Pandey M K, Aggarwal B B. et al . Gambogic acid inhibits angiogenesis and prostate tumor growth by suppressing vascular endothelial growth factor receptor 2 signaling.  Cancer Res. 2008;  68 1843-50
  • 82 Badary O A, Taha R A, Gamal el-Din A M, Abdel-Wahab M H. Thymoquinone is a potent superoxide anion scavenger.  Drug Chem Toxicol. 2003;  26 87-98
  • 83 Badary O A, Abd-Ellah M F, El-Mahdy M A, Salama S A, Hamada F M. Anticlastogenic activity of thymoquinone against benzo(a)pyrene in mice.  Food Chem Toxicol. 2007;  45 88-92
  • 84 Mansour M A, Nagi M N, El-Khatib A S, Al-Bekairi A M. Effects of thymoquinone on antioxidant enzyme activities, lipid peroxidation and DT-diaphorase in different tissues of mice: a possible mechanism of action.  Cell Biochem Funct. 2002;  20 143-51
  • 85 Gali-Muhtasib H, Diab-Assaf M, Boltze C, Al-Hmaira J, Hartig R, Roessner A. et al . Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism.  Int J Oncol. 2004;  25 857-66
  • 86 Badary O A. Thymoquinone attenuates ifosfamide-induced Fanconi syndrome in rats and enhances its antitumor activity in mice.  J Ethnopharmacol. 1999;  67 135-42
  • 87 Badary O A, Gamal El-Din A M. Inhibitory effects of thymoquinone against 20-methylcholanthrene-induced fibrosarcoma tumorigenesis.  Cancer Detect Prev. 2001;  25 362-8
  • 88 Gali-Muhtasib H, Roessner A, Schneider-Stock R. Thymoquinone: a promising anti-cancer drug from natural sources.  Int J Biochem Cell Biol. 2006;  38 1249-53
  • 89 Roepke M, Diestel A, Bajbouj K, Walluscheck D, Schonfeld P, Roessner A. et al . Lack of p53 augments thymoquinone-induced apoptosis and caspase activation in human osteosarcoma cells.  Cancer Biol Ther. 2007;  6 160-9
  • 90 Shoieb A M, Elgayyar M, Dudrick P S, Bell J L, Tithof P K. In vitro inhibition of growth and induction of apoptosis in cancer cell lines by thymoquinone.  Int J Oncol. 2003;  22 107-13
  • 91 El-Mahdy M A, Zhu Q, Wang Q E, Wani G, Wani A A. Thymoquinone induces apoptosis through activation of caspase-8 and mitochondrial events in p53-null myeloblastic leukemia HL-60 cells.  Int J Cancer. 2005;  117 409-17
  • 92 Tan M, Norwood A, May M, Tucci M, Benghuzzi H. Effects of (-)epigallocatechin gallate and thymoquinone on proliferation of a PANC-1 cell line in culture.  Biomed Sci Instrum. 2006;  42 363-71
  • 93 Worthen D R, Ghosheh O A, Crooks P A. The in vitro anti-tumor activity of some crude and purified components of blackseed, Nigella sativa L.  Anticancer Res. 1998;  18 1527-32
  • 94 Mahgoub A A. Thymoquinone protects against experimental colitis in rats.  Toxicol Lett. 2003;  143 133-43
  • 95 Haq A, Lobo P I, Al-Tufail M, Rama N R, Al-Sedairy S T. Immunomodulatory effect of Nigella sativa proteins fractionated by ion exchange chromatography.  Int J Immunopharmacol. 1999;  21 283-95
  • 96 Hajhashemi V, Ghannadi A, Jafarabadi H. Black cumin seed essential oil, as a potent analgesic and antiinflammatory drug.  Phytother Res. 2004;  18 195-9
  • 97 Badary O A, Nagi M N, al-Shabanah O A, al-Sawaf H A, al-Sohaibani M O, al-Bekairi A M. Thymoquinone ameliorates the nephrotoxicity induced by cisplatin in rodents and potentiates its antitumor activity.  Can J Physiol Pharmacol. 1997;  75 1356-61
  • 98 Badary O A, Al-Shabanah O A, Nagi M N, Al-Rikabi A C, Elmazar M M. Inhibition of benzo[a]pyrene-induced forestomach carcinogenesis in mice by thymoquinone.  Eur J Cancer Prev. 1999;  8 435-40
  • 99 El Mezayen E, El Gazzar M, Nicolls M R, JMarecki J C, Dreskin S C, Nomiyama H. Effect of thymoquinone on cyclooxygenase expression and prostaglandin production in a mouse model of allergic airway inflammation.  Immunol Lett. 2006;  106 72-81
  • 100 Nagi M N, Mansour M A. Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity in rats: a possible mechanism of protection.  Pharmacol Res. 2000;  41 283-9
  • 101 El-Mahmoudy A, Matsuyama H, Borgan M A, Shimizu Y, El-Sayed M G, Minamoto N. et al . Thymoquinone suppresses expression of inducible nitric oxide synthase in rat macrophages.  Int Immunopharmacol. 2002;  2 1603-11
  • 102 El-Dakhakhny M, Madi N J, Lembert N, Ammon H P. Nigella sativa oil, nigellone and derived thymoquinone inhibit synthesis of 5-lipoxygenase products in polymorphonuclear leukocytes from rats.  J Ethnopharmacol. 2002;  81 161-4
  • 103 El-Mahmoudy A, Shimizu Y, Shiina T, Matsuyama H, Nikami H, Takewaki T. Macrophage-derived cytokine and nitric oxide profiles in type I and type II diabetes mellitus: effect of thymoquinone.  Acta Diabetol. 2005;  42 23-30
  • 104 Gali-Muhtasib H U, Abou Kheir W G, Kheir L A, Darwiche N, Crooks P A. Molecular pathway for thymoquinone-induced cell-cycle arrest and apoptosis in neoplastic keratinocytes.  Anticancer Drugs. 2004;  15 389-99
  • 105 Sethi G, Ahn K S, Aggarwal B B. Targeting NF-kB activation pathway by thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mol Cancer Res, in press
  • 106 Yi T, Yi Z, Cho S, Pang X, Rodriguez M, Wang Y. et al .Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and ERK signaling pathways. Mol Cancer Ther, in press
  • 107 Huang M T, Ho C T, Wang Z Y, Ferraro T, Lou Y R, Stauber K. et al . Inhibition of skin tumorigenesis by rosemary and its constituents carnosol and ursolic acid.  Cancer Res. 1994;  54 701-8
  • 108 Tokuda H, Ohigashi H, Koshimizu K, Ito Y. Inhibitory effects of ursolic and oleanolic acid on skin tumor promotion by 12-O-tetradecanoylphorbol 13-acetate.  Cancer Lett. 1986;  33 279-85
  • 109 Ohigashi H, Takamura H, Koshimizu K, Tokuda H, Ito Y. Search for possible antitumor promoters by inhibition of 12-O-tetradecanoylphorbol 13-acetate-induced Epstein-Barr virus activation; ursolic acid and oleanolic acid from an anti-inflammatory Chinese medicinal plant, Glechoma hederaceae L.  Cancer Lett. 1986;  30 143-51
  • 110 Nishino H, Nishino A, Takayasu J, Hasegawa T, Iwashima A, Hirabayashi K. et al . Inhibition of the tumor-promoting action of 12-O-tetradecanoylphorbol 13-acetate by some oleanane-type triterpenoid compounds.  Cancer Res. 1988;  48 5210-5
  • 111 Sohn K H, Lee H Y, Chung H Y, Young H S, Yi S Y, Kim K W. Anti-angiogenic activity of triterpene acids.  Cancer Lett. 1995;  94 213-8
  • 112 Simon A, Najid A, Chulia A J, Delage C, Rigaud M. Inhibition of lipoxygenase activity and HL60 leukemic cell proliferation by ursolic acid isolated from heather flowers (Calluna vulgaris).  Biochim Biophys Acta. 1992;  1125 68-72
  • 113 Najid A, Simon A, Cook J, Chable-Rabinovitch H, Delage C, Chulia A J. et al . Characterization of ursolic acid as a lipoxygenase and cyclooxygenase inhibitor using macrophages, platelets and differentiated HL60 leukemic cells.  FEBS Lett. 1992;  299 213-7
  • 114 Ringbom T, Segura L, Noreen Y, Perera P, Bohlin L. Ursolic acid from Plantago major, a selective inhibitor of cyclooxygenase-2 catalyzed prostaglandin biosynthesis.  J Nat Prod. 1998;  61 1212-5
  • 115 Subbaramaiah K, Michaluart P, Sporn M B, Dannenberg A J. Ursolic acid inhibits cyclooxygenase-2 transcription in human mammary epithelial cells.  Cancer Res. 2000;  60 2399-404
  • 116 Cha H J, Bae S K, Lee H Y, Lee O H, Sato H, Seiki M. et al . Anti-invasive activity of ursolic acid correlates with the reduced expression of matrix metalloproteinase-9 (MMP-9) in HT1080 human fibrosarcoma cells.  Cancer Res. 1996;  56 2281-4
  • 117 Cha H J, Park M T, Chung H Y, Kim N D, Sato H, Seiki M. et al . Ursolic acid-induced down-regulation of MMP-9 gene is mediated through the nuclear translocation of glucocorticoid receptor in HT1080 human fibrosarcoma cells.  Oncogene. 1998;  16 771-8
  • 118 Es-Saady D, Simon A, Jayat-Vignoles C, Chulia A J, Delage C. MCF-7 cell cycle arrested at G1 through ursolic acid, and increased reduction of tetrazolium salts.  Anticancer Res. 1996;  16 481-6
  • 119 Es-Saady D, Simon A, Ollier M, Maurizis J C, Chulia A J, Delage C. Inhibitory effect of ursolic acid on B16 proliferation through cell cycle arrest.  Cancer Lett. 1996;  106 193-7
  • 120 Choi B M, Park R, Pae H O, Yoo J C, Kim Y C, Jun C D. et al . Cyclic adenosine monophosphate inhibits ursolic acid-induced apoptosis via activation of protein kinase A in human leukaemic HL-60 cells.  Pharmacol Toxicol. 2000;  86 53-8
  • 121 Choi Y H, Baek J H, Yoo M A, Chung H Y, Kim N D, Kim K W. Induction of apoptosis by ursolic acid through activation of caspases and down-regulation of c-IAPs in human prostate epithelial cells.  Int J Oncol. 2000;  17 565-71
  • 122 Hollosy F, Meszaros G, Bokonyi G, Idei M, Seprodi A, Szende B. et al . Cytostatic, cytotoxic and protein tyrosine kinase inhibitory activity of ursolic acid in A431 human tumor cells.  Anticancer Res. 2000;  20 4563-70
  • 123 Hollosy F, Idei M, Csorba G, Szabo E, Bokonyi G, Seprodi A. et al . Activation of caspase-3 protease during the process of ursolic acid and its derivative-induced apoptosis.  Anticancer Res. 2001;  21 3485-91
  • 124 Konopleva M, Tsao T, Ruvolo P, Stiouf I, Estrov Z, Leysath C E. et al . Novel triterpenoid CDDO-Me is a potent inducer of apoptosis and differentiation in acute myelogenous leukemia.  Blood. 2002;  99 326-35
  • 125 Kim D K, Baek J H, Kang C M, Yoo M A, Sung J W, Chung H Y. et al . Apoptotic activity of ursolic acid may correlate with the inhibition of initiation of DNA replication.  Int J Cancer. 2000;  87 629-36
  • 126 Baek J H, Lee Y S, Kang C M, Kim J A, Kwon K S, Son H C. et al . Intracellular Ca2+ release mediates ursolic acid-induced apoptosis in human leukemic HL-60 cells.  Int J Cancer. 1997;  73 725-8
  • 127 Lauthier F, Taillet L, Trouillas P, Delage C, Simon A. Ursolic acid triggers calcium-dependent apoptosis in human Daudi cells.  Anticancer Drugs. 2000;  11 737-45
  • 128 Shishodia S, Majumdar S, Banerjee S, Aggarwal B B. Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1.  Cancer Res. 2003;  63 4375-83
  • 129 Pathak A K, Bhutani M, Nair A S, Ahn K S, Chakraborty A, Kadara H. et al . Ursolic acid inhibits STAT3 activation pathway leading to suppression of proliferation and chemosensitization of human multiple myeloma cells.  Mol Cancer Res. 2007;  5 943-55
  • 130 Shukla Y, Prasad S, Tripathi C, Singh M, George J, Kalra N. In vitro and in vivo modulation of testosterone mediated alterations in apoptosis related proteins by [6]-gingerol.  Mol Nutr Food Res. 2007;  51 1492-502
  • 131 Ishiguro K, Ando T, Maeda O, Ohmiya N, Niwa Y, Kadomatsu K. et al . Ginger ingredients reduce viability of gastric cancer cells via distinct mechanisms.  Biochem Biophys Res Commun. 2007;  362 218-23
  • 132 Lee H S, Seo E Y, Kang N E, Kim W K. [6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells.  J Nutr Biochem. 2008;  19 313-9
  • 133 Bode A M, Ma W Y, Surh Y J, Dong Z. Inhibition of epidermal growth factor-induced cell transformation and activator protein 1 activation by [6]-gingerol.  Cancer Res. 2001;  61 850-3
  • 134 Kim E C, Min J K, Kim T Y, Lee S J, Yang H O, Han S. et al . [6]-Gingerol, a pungent ingredient of ginger, inhibits angiogenesis in vitro and in vivo.  Biochem Biophys Res Commun. 2005;  335 300-8
  • 135 Kim S O, Chun K S, Kundu J K, Surh Y J. Inhibitory effects of [6]-gingerol on PMA-induced COX-2 expression and activation of NF-kappaB and p38 MAPK in mouse skin.  Biofactors. 2004;  21 27-31
  • 136 Lee S H, Cekanova M, Baek S J. Multiple mechanisms are involved in 6-gingerol-induced cell growth arrest and apoptosis in human colorectal cancer cells.  Mol Carcinog. 2008;  47 197-208
  • 137 Patel D, Shukla S, Gupta S. Apigenin and cancer chemoprevention: progress, potential and promise (review).  Int J Oncol. 2007;  30 233-45
  • 138 Manju V, Nalini N. Protective role of luteolin in 1,2-dimethylhydrazine induced experimental colon carcinogenesis.  Cell Biochem Funct. 2007;  25 189-94

Bharat B. Aggarwal, PhD

Cytokine Research Laboratory

Department of Experimental Therapeutics

The University of Texas

M. D. Anderson Cancer Center

1515 Holcombe Boulevard

Box 143

Houston

Texas 77030

USA

Phone: +1/713/794/1817

Fax: +1/713/745/6339

Email: aggarwal@mdanderson.org

    >