Cell Biology and Metabolism
Development of Insulin Resistance in 3T3-L1 Adipocytes*

https://doi.org/10.1074/jbc.272.12.7759Get rights and content
Under a Creative Commons license
open access

Insulin resistance is a manifestation of both diabetes mellitus and obesity. However, the mechanism is still not clearly identified. Herein, we describe a procedure that allows us to evaluate the development of insulin resistance in 3T3-L1 adipocytes. Under these conditions, we show that the concentration of insulin required for 50% desensitization of glucose transport activity is 100 pM; maximal desensitization could be achieved with 1 nM. This demonstrates for the first time that 3T3-L1 adipocytes develop insulin resistance in response to physiologically relevant concentrations of insulin. Glucose (or glucosamine), in addition to insulin, was required to establish desensitization. The expression of GLUT4 protein decreased by 50% with exposure to 10 nM insulin. The dose-dependent loss of GLUT4 was similar to the dose dependence for insulin-resistant transport activity. Translocation in the presence of acute insulin was apparent, but the extent of recruitment directly reflected the decrease in GLUT4 protein. GLUT4 mRNA also declined, but the ED50 was approximately 5 nM. Together, these data suggest that the loss of GLUT4 protein likely underlies the cause of desensitization. However, the loss of GLUT4 protein did not correlate with the loss in GLUT4 mRNA suggesting post-translational control of GLUT4 expression.

Cited by (0)

*

This work was supported in part by National Institutes of Health Grant DK45035 (to S. C. F.). The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

2

R. Risch and S. C. Frost, unpublished data.