Mechanisms of Signal Transduction
Inhibition of E2F Abrogates the Development of Cardiac Myocyte Hypertrophy*

https://doi.org/10.1074/jbc.M212612200Get rights and content
Under a Creative Commons license
open access

Growth of the post-natal mammalian heart occurs primarily by cardiac myocyte hypertrophy. Previously, we and others have shown that a partial re-activation of the cell cycle machinery occurs in myocytes undergoing hypertrophy such that cells progress through the G1/S transition. In this study, we have examined the regulation of the E2F family of transcription factors that are crucial for the G1/S phase transition during normal cardiac development and the development of myocyte hypertrophy in the rat. Thus, mRNA and protein levels of E2F-1, 3, and 4 and DP-1 and DP-2 were down-regulated during development to undetectable levels in adult myocytes. Interestingly, E2F-5 protein levels were substantially up-regulated during development. In contrast, an induction of E2F-1, 3, and 4 and the DP-1 protein was observed during the development of myocyte hypertrophy in neonatal myocytes treated with serum or phenylephrine, whereas the protein levels of E2F-5 were decreased with serum stimulation. E2F activity, as measured by a cyclin E promoter luciferase assay and E2F-DNA binding activity, increased significantly during the development of hypertrophy with serum and phenylephrine compared with non-stimulated cells. Inhibiting E2F activity with a specific peptide that blocks E2F-DP heterodimerization prevented the induction of hypertrophic markers (atrial natriuretic factor and brain natriuretic peptide) in response to serum and phenylephrine, reduced the increase in myocyte size, and inhibited protein synthesis in stimulated cells. Thus, we have shown that the inhibition of E2F function prevents the development of hypertrophy. Targeting E2F function might be a useful approach for treating diseases that cause pathophysiological hypertrophic growth.

Cited by (0)

*

This work was supported by British Heart Foundation Ph.D. Studentship Grant FS/99029 (to G. B.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.