ÜBERSICHTSARBEIT
Deformable registration for image-guided radiation therapyElastische Registrierung in der bildgestützten Strahlentherapie

https://doi.org/10.1078/0939-3889-00327Get rights and content

Abstract

Ths paper examines several applications of deformable registration algorithms in the field of image-guided radiotherapy. The first part focuses on the description of input and output of deformable registration algorithms, with a brief review of conventional and most current methods. The typical applications of deformable registration are then reviewed on the basis of four practical examples. The first two sets of examples deal with the fusion of images obtained from the same patient (inter-fraction registration), with time intervals of several days between each image. The other two examples deal with the fusion of images obtained in immediate sequence (intra-fraction registration); in this case, the focus is the displacement during image acquisition or patient treatment (mainly due to respiratory movement), with time intervals in the order of magnitude of tenths of seconds. Finally, the registration of images of different patients (inter-patient registration) is also discussed.

In conclusion, deformable registration has become a fundamental tool for image analysis in radiotherapy. Although extensive validation of the numerous existing methods is required before extending its clinical use, deformable registration is expected to become a standard methodology in the treatment planning systems in the near future.

Zusammenfassung

In diesem Artikel wird ein Überblick über die Prinzipien und Anwendungen der elastischen Registrierung im Bereich der bildgestützten Strahlentherapie gegeben. Dabei werden übliche Ein- und Ausgabeparameter ebenso wie die derzeit gängigsten Methoden für die elastische Registrierung beschrieben. Schließlich werden typische Anwendungen anhand von 4 Beispielen diskutiert. Die ersten beiden Beispiele behandeln die Fusionierung von Bilddaten des gleichen Patienten, die zwischen Fraktionen gewonnen wurden (Inter-Fraktion). Die Zeitintervalle zwischen den Aufnahmen liegen dabei in der Größenordnung von mehreren Tagen. Zwei weitere Beispiele behandeln die Fusionierung von Bilddaten, die unmittelbar hintereinander gewonnen wurden. Dabei sind anatomische Verschiebungen während der Bilddatenakquisition oder Patientenbehandlung, z.B. durch Atmung, kritisch. Die Zeitintervalle zwischen der Bildgewinnung bei dieser Anwendung sind in der Größenordnung von Zehntelsekunden. Abschließend wird die Registrierung von Bilddaten besprochen, die sich auf unterschiedliche Patienten beziehen.

Zusammenfassend kann festgestellt werden, dass die elastische Registrierung ein grundlegendes Bildanalysewerkzeug in der Strahlentherapie geworden ist. Die praktische Anwendung wird in der Zukunft zunehmen, ein routine-mäßiger Einsatz im Patientenbetrieb setzt jedoch weitere Überprüfungen der existierenden Methoden voraus. Es ist zu erwarten, dass diese Methoden in zukünftigen Bestrahlungsplanungssystemen standardmäßig verfügbar sein werden.

References (137)

  • K Rohr

    Extraction of 3D Anatomical Point Landmarks Based on Invariance Principles

    Pat Recog

    (1999)
  • X Wu et al.

    Deformable image registration for the use of magnetic resonance spectroscopy in prostate treatment planning

    Int J Radiat Oncol Biol Phys

    (2004)
  • M Fornefett et al.

    Radial Basis Functions with Compact Support for Elastic Registration of Medical Images

    Im Vis Comp

    (2001)
  • J Thirion

    Image matching as a diffusion process: an analogy with Maxwell's demons

    Med Image Anal

    (1998)
  • E Schreibmann et al.

    Narrow band deformable registration of prostate magnetic resonance imaging, magnetic resonance spectroscopic imaging, and computed tomography studies

    Int J Radiat Oncol Biol Phys

    (2005)
  • K Langen et al.

    Organ motion and its management

    Int J Radiat Oncol Biol Phys

    (2001)
  • B Fei et al.

    Semiautomatic nonrigid registration for the prostate and pelvic MR volumes

    Acad Radiol

    (2005)
  • H Wang et al.

    Implementation and validation of a three-dimensional deformable registration algorithm for targeted prostate cancer radiotherapy

    Int J Radiat Oncol Biol Phys

    (2005)
  • K Deurloo et al.

    Quantification of shape variation of prostate and seminal vesicles during external beam radiotherapy

    Int J Radiat Oncol Biol Phys

    (2005)
  • P Kupelian et al.

    Intraprostatic fiducials for localization of the prostate gland: monitoring intermarker distances during radiation therapy to test for marker stability

    Int J Radiat Oncol Biol Phys

    (2005)
  • M Smitsmans et al.

    Automatic localization of the prostate for on-line or offline image-guided radiotherapy

    Int J Radiat Oncol Biol Phys

    (2004)
  • G Matsopoulos et al.

    Thoracic deformable, registration combining self-organizing maps and radial basis functions

    Med Image Anal

    (2005)
  • M Betke et al.

    Landmark detection in the chest and registration of lung surfaces with an application to nodule registration

    Med Image Anal

    (2003)
  • D Jaffray et al.

    Managing geometric uncertainty in conformal intensity-modulated radiation therapy

    Semin Radiat Oncol

    (1999)
  • D Yan et al.

    The influence of interpatient and intrapatient rectum variation on external beam treatment of prostate cancer

    Int J Radiat Oncol Biol Phys

    (2001)
  • M Ghilezan et al.

    Online image-guided intensity-modulated radiotherapy for prostate cancer: How much improvement can we expect? A theoretical assessment of clinical benefits and potential dose escalation by improving precision and accuracy of radiation delivery

    Int J Radiat Oncol Biol Phys

    (2004)
  • M Goitein

    Organ, Tumor Motion: An Overview

    Semin Radiat Oncol

    (2004)
  • G Chen et al.

    Artifacts in Computed Tomography Scanning of Moving Objects

    Semin Radiat Oncol

    (2004)
  • C Ling et al.

    Editorial: High-tech will improve radiotherapy of NSCLC: a hypothesis waiting to be validated

    Int J Radiat Oncol Biol Phys

    (2004)
  • H Shirato et al.

    Intrafractional Tumor Motion: Lung and Liver

    Semin Radiat Oncol

    (2004)
  • P Keall

    4-Dimensional Computed Tomography Imaging and Treatment Planning

    Semin Radiat Oncol

    (2004)
  • E Ford et al.

    Cone-beam CT with megavoltage beams and an amorphous silicon electronic portal imaging device: potential for verification of radiotherapy of lung cancer

    Med Phys

    (2002)
  • W Crum et al.

    Non-rigid image registration: theory and practice

    Br J Radiol

    (2004)
  • J Pluim et al.

    Mutual information based registration of medical images: a survey

    IEEE Trans Med Imaging

    (2003)
  • Dawant B: Non-rigid registration of medical images: purpose and methods, a short survey. In IEEE International...
  • D Rueckert
  • D Hill et al.

    Medical image registration

    Phys Med Biol

    (2001)
  • J Fitzpatrick et al.

    Image registration; Handbook of Medical Imaging, volume 2 of Medical Image Processing and Analysis, chapter 8

    (2000)
  • K Rohr
  • Fan L, Chen C, Reinhardt J, Hoffman E: Evaluation and application of 3D lung warping and registration model using HRCT...
  • B Schaly et al.

    Tracking the dose distribution in radiation therapy by accounting for variable anatomy

    Phys Med Biol

    (2004)
  • W Lu et al.

    Fast free-form deformable registration via calculus of variations

    Phys Med Biol

    (2004)
  • D Sarrut et al.

    Simulation of 4D CT images from deformable registration between inhale and exhale breath-hold CT scans

    Med Phys

    (2006)
  • T Sundaram et al.

    Towards a model of lung biomechanics: pulmonary kinematics via registration of serial lung images

    Med Image Anal

    (2005)
  • M Coselmon et al.

    Mutual information based CT registration of the lung at exhale and inhale breathing states using thin- plate splines

    Med Phys

    (2004)
  • K Brock et al.

    Automated generation of a four-dimensional model of the liver using warping and mutual information

    Med Phys

    (2003)
  • D Rueckert et al.

    Nonrigid, registration using free-form deformations: Application to breast MR images

    IEEE Trans Med Imaging

    (1999)
  • A Roche et al.

    Unifying Maximum Likelihood Approaches in Medical Image Registration

    Int J of Comput Vision

    (2000)
  • G Hermosillo et al.

    Variational methods for multimodal image matching

    Int J of Comput Vision

    (2002)
  • H Johnson et al.

    Consistent Landmark and Intensity-based Image Registration

    IEEE Trans Med Imaging

    (2002)
  • Cited by (76)

    • Utility of deformable image registration for adaptive prostate cancer treatment. Analysis and comparison of two commercially available algorithms

      2022, Zeitschrift fur Medizinische Physik
      Citation Excerpt :

      This opens a wide field for tailored quality assurance (QA) tools that are sufficiently fast and reliable on a daily clinical basis [7]. Prostate ART based on daily cone-beam computed tomography (CBCT) images is one of the most explored and developed technique but still challenging especially with DIR [4,9]. Unique combination of low contrast structure boundaries (between the prostate and rectum or bladder), daily differences in structure shapes and positions [10,11] and CBCT low quality [12] makes it an interesting example.

    • The prognostic value of volumetric changes of the primary tumor measured on Cone Beam-CT during radiotherapy for concurrent chemoradiation in NSCLC patients

      2020, Radiotherapy and Oncology
      Citation Excerpt :

      DIR is a process of defining a map with deformations between two images in a nonlinear way, providing a voxel to voxel mapping between 2 scans. One image is considered the fixed image (CBCT), and the other one the moving image (MidP-CT) [26–28]. DIR was performed with in-house developed software (Match42).

    View all citing articles on Scopus
    View full text