Hostname: page-component-6b989bf9dc-cvxtj Total loading time: 0 Render date: 2024-04-14T13:49:37.726Z Has data issue: false hasContentIssue false

Efficacy of mosquito nets treated with insecticide mixtures or mosaics against insecticide resistant Anopheles gambiae and Culex quinquefasciatus (Diptera: Culicidae) in Côte d'Ivoire

Published online by Cambridge University Press:  09 March 2007

J.-M. Hougard*
Affiliation:
Vector Control Research Unit (RU016), Institut de Recherche pour le Développement (IRD), Laboratoire de Lutte contre les Insectes Nuisibles (LIN), 911 Avenue Agropolis, PO Box 64501, 34394 Montpellier Cedex 5, France
V. Corbel
Affiliation:
Vector Control Research Unit (RU016), Institut de Recherche pour le Développement (IRD), Laboratoire de Lutte contre les Insectes Nuisibles (LIN), 911 Avenue Agropolis, PO Box 64501, 34394 Montpellier Cedex 5, France
R. N'Guessan
Affiliation:
Centre Pierre Richet, 01 PO Box 1500, Bouaké 01, Côte d'Ivoire
F. Darriet
Affiliation:
Vector Control Research Unit (RU016), Institut de Recherche pour le Développement (IRD), Laboratoire de Lutte contre les Insectes Nuisibles (LIN), 911 Avenue Agropolis, PO Box 64501, 34394 Montpellier Cedex 5, France
F. Chandre
Affiliation:
Vector Control Research Unit (RU016), Institut de Recherche pour le Développement (IRD), Laboratoire de Lutte contre les Insectes Nuisibles (LIN), 911 Avenue Agropolis, PO Box 64501, 34394 Montpellier Cedex 5, France
M. Akogbéto
Affiliation:
Centre de Recherches Entomologiques de Cotonou (CREC), 06 PO Box 2604, Cotonou, Bénin
T. Baldet
Affiliation:
Centre Muraz, PO Box 153, Bobo-Dioulasso, Burkina Faso
P. Guillet
Affiliation:
Planning and Technical Guidance, Prevention and Control, Communicable Diseases Cluster, WHO, 27 Avenue Appia, CH-1211 Geneva 27, Switzerland
P. Carnevale
Affiliation:
Vector Control Research Unit (RU016), Institut de Recherche pour le Développement (IRD), Laboratoire de Lutte contre les Insectes Nuisibles (LIN), 911 Avenue Agropolis, PO Box 64501, 34394 Montpellier Cedex 5, France
M. Traoré-Lamizana
Affiliation:
Centre Pierre Richet, 01 PO Box 1500, Bouaké 01, Côte d'Ivoire
*
* Fax: + 33 467 54 20 44; E-mail: hougard@mpl.ird.fr

Abstract

Only pyrethroid insecticides have so far been recommended for the treatment of mosquito nets for malaria control. Increasing resistance of malaria vectors to pyrethroids threatens to reduce the potency of this important method of vector control. Among the strategies proposed for resistance management is to use a pyrethroid and a non-pyrethroid insecticide in combination on the same mosquito net, either separately or as a mixture. Mixtures are particularly promising if there is potentiation between the two insecticides as this would make it possible to lower the dosage of each, as has been demonstrated under laboratory conditions for a mixture of bifenthrin (pyrethroid) and carbosulfan (carbamate). The effect of these types of treatment were compared in experimental huts on wild populations of Anopheles gambiae Giles and the nuisance mosquito Culex quinquefasciatus Say, both of which are multi-resistant. Four treatments were evaluated in experimental huts over six months: the recommended dosage of 50 mg m−2 bifenthrin, 300 mg m−2 carbosulfan, a mosaic of 300 mg m−2 carbosulfan on the ceiling and 50 mg m−2 bifenthrin on the sides, and a mixture of 6.25 mg m−2 carbosulfan and 25 mg m−2 bifenthrin. The mixture and mosaic treatments did not differ significantly in effectiveness from carbosulfan and bifenthrin alone against anophelines in terms of deterrency, induced exophily, blood feeding inhibition and overall mortality, but were more effective than in earlier tests with deltamethrin. These results are considered encouraging, as the combination of different classes of insecticides might be a potential tool for resistance management. The mixture might have an advantage in terms of lower cost and toxicity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. (1925) A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265267.CrossRefGoogle Scholar
Campanhola, C. & Plapp, F.W. (1989) Toxicity and synergism of insecticides against susceptible and pyrethroid-resistant third instars of the tobacco budworn (Lepidoptera: Noctuidae). Journal of Economic Entomology 82, 15271533.Google Scholar
Chandre, F., Darriet, F., Doannio, J.M.C., Rivière, F., Pasteur, N. & Guillet, P. (1997) Distribution of organophosphate and carbamate resistance in Culex pipiens quinquefasciatus (Diptera: Culicidae) from West Africa. Journal of Medical Entomology 34, 664671.Google Scholar
Chandre, F., Darriet, F., Darder, M., Cuany, A., Doannio, J.M.C., Pasteur, N. & Guillet, P. (1998) Pyrethroid resistance in Culex quinquefasciatus from West Africa. Medical and Veterinary Entomology 12, 359366.Google Scholar
Chandre, F., Darriet, F., Manga, L., Akogbeto, M., Faye, O., Mouchet, J. & Guillet, P. (1999a) Status of pyrethroid resistance in Anopheles gambiae sensu lato. Bulletin of World Health Organization 77, 230234.Google Scholar
Chandre, F., Darriet, F., Manguin, S., Brengues, C., Carnevale, P. & Guillet, P. (1999b) Pyrethroid cross resistance spectrum among populations of Anopheles gambiae s.s. from Côte d'Ivoire. Journal of the American Mosquito Control Association 15, 5359.Google Scholar
Corbel, V., Darriet, F., Chandre, F. & Hougard, J.M. (2002) Insecticide mixtures for mosquito net impregnation against malaria vectors. Parasite 9, 255259.Google Scholar
Curtis, C.F. (1985) Theoretical models of the use of insecticide mixtures for management of resistance. Bulletin of Entomological Research 75, 259265.Google Scholar
Curtis, C.F. & Mnzava, A.E.P. (2000) Comparison of house spraying and insecticide-treated nets for malaria control. Bulletin of the World Health Organization 78, 13891400.Google Scholar
Curtis, C.F., Hill, N., Kasim, S.H. (1993) Are there effective resistance management strategies for vectors of human disease? Biological Journal of the Linnean Society 48, 318.Google Scholar
Curtis, C.F., Myamba, J., Wilkes, T.J. (1996) Comparison of different insecticides and fabrics for anti-mosquito bednets and curtains. Medical and Veterinary Entomology 10, 111.Google Scholar
Curtis, C.F., Myamba, J., Maxwell, C.A. (1999) Report to WHOPES on trials in Tanzania of bednets treated with EM and SC formulations of bifenthrin. Unpublished document submitted to WHO, Geneva, Switzerland.Google Scholar
Darriet, F. (1998) La recherche expèrimentale. pp. 53–90 in La lutte contre les moustiques nuisants et vecteurs de maladies. Karthala-ORSTOM.Google Scholar
Darriet, F., Guillet, P., N'Guessan, R., Doanio, J.M.C., Koffi, A.A., Konan, L.Y., Carnevale, P. (1998) Impact de la résistance d’ Anopheles gambiae s.s. à la perméthrine et à la deltaméthrine sur l'efficacité des moustiquaires imprégnées. Médecine Tropicale 58, 349354.Google Scholar
Darriet, F., N'Guessan, R., Koffi, A.A., Doannio, J.M.C., Chandre, F. & Carnevale, P. (2000) Impact de la résistance aux pyréthrinoïdes sur l'efficacité des moustiquaires imprégnées dans la prévention du paludisme: résultats des essais en cases expérimentales avec la deltaméthrine SC. Bulletin de la Société de Pathologie Exotique 93, 131134.Google Scholar
Darriet, F., N'Guessan, R., Hougard, J.-M.Traoré-Lamizana, M. & Carnevale, P. (2002) Un outil expérimental indispensable à l'évaluation des insecticides: les cases-pièges. Bulletin de la Société de Pathologie Exotique 95, 299303.Google Scholar
Darriet, F., Corbel, V. & Hougard, J.-M. (2003) Efficacy of mosquito nets treated with a pyrethroid-organophosphorous mixture against Kdr and Kdr+ malaria vectors (Anopheles gambiae). Parasite 10 in pressGoogle Scholar
Denholm, I. & Rowland, M.W. (1992) Tactics for managing resistance in arthopods: theory and practice. Annual Review of Entomology 37, 91112.CrossRefGoogle Scholar
Fanello, C., Kolaczinski, J.H., Conway, D.J., Carnevale, P., Curtis, C.F. (1999) The kdr pyrethroid resistance in Anopheles gambiae: test of non pyrethroid insecticides and improvement of the detection method for the gene. Parassitologia 41, 323326.Google Scholar
Guillet, P., N'Guessan, R., Darriet, F.Traoré-Lamizana, M., Chandre, F., Carnevale, P. (2001) Combined pyrethroid and carbamate ‘two in one’ treated mosquito nets: field efficacy against pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus. Medical and Veterinary Entomology 15, 105112.Google Scholar
Hargreaves, K., Koerkemoer, L.L., Brooke, B., Hunt, R.H., Mthembu, J., Coetzee, M. (2000) Anopheles funestus resistant to pyrethroid insecticides in South Africa. Medical and Veterinary Entomology 14, 181189.Google Scholar
Hougard, J.-M., Duchon, S., Zaim, M., Guillet, P. (2002) Bifenthrin, a useful pyrethroid insecticide for treatment of mosquito nets. Journal of Medical Entomology 39, 526533.Google Scholar
Kasap, H., Kasap, M., Alptekin, D., Lüleyap, U., Herath, P.R.J. (2000) Insecticide resistance in Anopheles sacharovi Favre in southern Turkey. Bulletin of the World Health Organization 78, 687692.Google Scholar
Kolaczinski, J.H., Fanello, C.Hervé, J.-P.Conway, D.J., Carnevale, P., Curtis, C.F. (2000) Experimental and molecular genetic analysis of the impact of pyrethroid and non-pyrethroid insecticide impregnated bednets for mosquito control in area of pyrethroid resistance. Bulletin of Entomological Research 90, 125132.Google Scholar
Koziol, S.F., Witkowski, J.F. (1982) Synergism studies with binary mixtures of permethrin plus methyl parathion, chlorpyrifos, and malathion on European corn borer larvae. Journal of Economic Entomology 75, 2830.Google Scholar
Lines, J. (1996) Mosquito nets and insecticides for net treatment: a discussion of existing and potential distribution systems in Africa. Tropical Medicine and International Health 1, 616632.CrossRefGoogle ScholarPubMed
Malcom, C.A. (1988) Current status of pyrethroid resistance on anophelines. Parasitology Today 4, S12S14Google Scholar
Martinez-Torres, D.F., Chandre, F., Williamson, M.S., Darriet, F.Bergé, J.B.Devonshire, A.L., Guillet, P., Pasteur, N., Pauron, D. (1998) Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Molecular Biology 7, 179184.Google Scholar
Miller, J.E., Lindsay, S.W., Armstrong, J.R.M. (1991) Experimental hut trials of bednets impregnated with synthetic pyrethroid or organophosphate insecticide for mosquito control in The Gambia. Medical and Veterinary Entomology 5, 465467.CrossRefGoogle ScholarPubMed
N'Guessan, R., Darriet, F., Doannio, J.M.C., Chandre, F., Carnevale, P. (2001) Olyset Net ® efficacy against pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus after 3 years’ field use in Côte d'Ivoire. Medical and Veterinary Entomology 15, 97104.Google Scholar
N'Guessan, R., Darriet, F., Guillet, P., Carnevale, P., Lamizana, M.T., Corbel, V., Koffi, A.A., Chandre, F. (2003) Resistance to carbosulfan in field populations of Anopheles gambiae from Côte d'Ivoire based on reduced susceptibility of acetylcholinesterase. Medical and Veterinary Entomology 17, 1925.Google Scholar
Njunwa, K.J., Lines, J.D., Magesa, S.M., Mnzava, A.E.P., Wilkes, T.J., Alilio, M., Kivumbi, K., Curtis, C.F. (1991) Trial of pyrethroid impregnated bednets in an area of Tanzania holoendemic for malaria. Part 1. Operational methods and acceptability. Acta Tropica 49, 8796.Google Scholar
Omer, S.M., Georghiou, G.P., Irving, S.N. (1980) DDT/pyrethroid resistance inter-relationships in Anopheles stephensi. Mosquito News 40, 200209.Google Scholar
Ranson, H., Jensen, B., Vulule, J.M., Wang, X., Hemingway, J., Collins, F.H. (2000) Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Molecular Biology 9, 491497.Google Scholar
Raymond, M., Prato, G., Ratsira, D. (1997) Probit and logit analysis program version 2.0. Praxème: R&D.Google Scholar
Temu, E.A., Minjas, J.N., Shiff, C.J., Majala, A. (1999) Bedbug control by permethrin-impregnated bednets in Tanzania. Medical and Veterinary Entomology 13, 457459.Google Scholar
Tomlin, C.D.S. (2000) The pesticide manual, a world compendium. 12th edn. London, British Crop Protection CouncilGoogle Scholar
WHO (1986) Carbamate insecticides: a general introduction. Environmental Health Criteria 64. Geneva, World Health Organization.Google Scholar
WHO (1998) Test procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces WHO/CDS/MAL/98.12, Geneva, World Health Organization.Google Scholar
Zaim, M., Aitio, A., Nakashima, N. (2000) Safety of pyrethroid-treated nets. Medical and Veterinary Entomology 14, 15.CrossRefGoogle Scholar