Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T15:54:38.451Z Has data issue: false hasContentIssue false

The influence of protein:energy value of the ration and level of feed intake on the energy and nitrogen metabolism of the growing pig

2.* N metabolism at two environmental temperatures

Published online by Cambridge University Press:  09 March 2007

F. Berschauer
Affiliation:
ARC Institute of Animal Physiology, Babraham, Cambridge CB2 4AT
W. H. Close
Affiliation:
ARC Institute of Animal Physiology, Babraham, Cambridge CB2 4AT
D. B. Stephens
Affiliation:
ARC Institute of Animal Physiology, Babraham, Cambridge CB2 4AT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The nitrogen balances of thirty-six individually-housed, entire male pigs (body-weight range 19–50 kg) were measured over 7 d periods when the animals were kept initially at an environmental temperature of 22° and then at 10° while fed on rations containing 153, 201 and 258 g crude protein (N × 6·25; CP)/kg dry matter (DM). The respective metabolizable energy (ME) contents were 16·29, 16·96 and 17·24 MJ/kg DM. Each ration was given at three levels, 20, 35 and 50 g feed/kg body-weight per d. The animals fed on the 20 and 35 g/kg feeding level were catheterized and blood samples withdrawn on two consecutive days within the N-balance periods for the determination of blood urea (BU) concentration both before and at hourly intervals for 7 h following the morning feed.

2. An increase in feed intake resulted in a significant increase in N retention (NR) at each environmental temperature. However, NR as a proportion of N intake was higher the lower the protein content of the ration. With the exception of the animals fed on the low-protein ration, NR at any given feed intake was lower at 10° than at 22° and these differences were reflected in the animal's body-weight gain.

3. Values for the fasting N metabolism (Nf), calculated from the relationship between NR and intake of digestible N (IDN), were temperature-dependent. At 22°, a constant Nf value of 0·255 g N/kg body-weight0·75 per d was found appropriate, while at 10° Nf increased with increase in protein content of the ration from 0·380 on the low protein ration to 0·533 and 0·753 g N/kg body-weight0·75 per d on the medium- and high-protein rations respectively.

4. The efficiency of N utilization (kN) reflected the differences in the relationships between NR and IDN. At 22° the relationship was curvilinear so that kN decreased with increase in both the level of feed intake and the protein content of the ration. At 10° the relationship was linear, hence kN was independent of feed intake within rations. However, it decreased from 0·909 to 0·679 as the protein content of the ration was increased.

5. The concentration of BU attained a maximal value some 3–5 h after the ingestion of the feed, with the values at 10° being higher than those at 22°. BU increased as the level of protein in the ration increased but decreased with the level of feed intake when dietary protein concentration was held constant. There was a significant correlation between BU and kN, indicating that BU is a useful criterion for assessing the efficiency of N utilization.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1983

References

REFERENCES

Agricultural Research Council (1981). The Nutrient Requirements of Pigs. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Anderson, R. S. & Edney, A. T. B. (1969). Vet. Rec. 84, 348.CrossRefGoogle Scholar
Bergner, H., Münchow, H., Zacharias, M. & Scholz, F. (1970). Arch. Tierernähr. 20, 63.CrossRefGoogle Scholar
Berschauer, F. (1977). Blutharnstoffkonzentration und Proteinverwertung beim Schwein. Diss. Hohenheimer Arb. H. 91. Stuttgart: E. Ulmer.Google Scholar
Berschauer, F., Close, W. H. & Stephens, D. B. (1981). Proc. Nutr. Soc. 40, 32A.Google Scholar
Berschauer, F., Gaus, G., Cornelius, H., Kühl, J. & Menke, K. H. (1980). Publs Eur. Ass. Anim. Prod. no. 27, p. 672.Google Scholar
Berschauer, F., Gaus, G., Ehrensvärd, U. & Menke, K. H. (1980). Paper P5/6.14, 31st EAAP Meeting, Munich, September 1980.Google Scholar
Berschauer, F., Gaus, G., Menke, K. H. (1980). In Energy Metabolism, p. 101 [Mount, L. E. editor]. London: Butterworths.CrossRefGoogle Scholar
Black, J. L. & Griffiths, D. A. (1975). Br. J. Nutr. 33, 399.CrossRefGoogle Scholar
Braude, R., Fulford, R. J., Mitchell, K. G., Myers, A. W. & Porter, J. W. G. (1974). Livestock. Prod. Sci. 1, 383.CrossRefGoogle Scholar
Close, W. H., Berschauer, F. & Heavens, R. P. (1983). Br. J. Nutr. 49, 255.CrossRefGoogle Scholar
Close, W. H., Mount, L. E. & Brown, D. (1978). Br. J. Nutr. 40, 423.CrossRefGoogle Scholar
Curran, M. K., Lean, K. J., Duckworth, J. E. & Holmes, W. (1972). Anim. Prod. 15, 11.Google Scholar
Davis, J. L. & Lucas, I. A. M. (1972). Anim. Prod. 15, 127.Google Scholar
Eggum, B. O. (1970). Br. J. Nutr. 24, 983.CrossRefGoogle Scholar
Fonnesbeck, P. V. & Symons, L. D. (1969). J. Anim. Sci. 28, 216.CrossRefGoogle Scholar
Fuller, M. F. & Crofts, R. M. J. (1977). Br. J. Nutr. 38, 479.CrossRefGoogle Scholar
Fuller, M. F., Webster, A. J. F., MacPherson, R. M. & Smith, J. S. (1976). Publs Eur. Ass. Anim. Prod. no. 19, p. 177.Google Scholar
Gädeken, D., Böhme, H. & Oslage, H. J. (1980). In Energy Metabolism, p. 407 [Mount, L. E. editor]. London: Butterworths.CrossRefGoogle Scholar
Gebhardt, G., Müller, H., Frenzel, F. & Hidalgo, A. (1973). Wiss. Z. Karl-Marz-Univ. Leipzig, Math-Nat. R. 22, 225.Google Scholar
Gebhardt, G. & Stein, J. (1970). Arch. Tierernähr. 20, 145.CrossRefGoogle Scholar
Holmes, C. W., Carr, J. R. & Pearson, G. (1980). Anim. Prod. 31, 279.Google Scholar
Kirchgessner, M. & Kellner, B. B. (1972). Arch. Tierernähr. 22, 249.CrossRefGoogle Scholar
Kumta, U. S. & Harper, A. E. (1961). J. Nutr. 74, 139.CrossRefGoogle Scholar
Marsh, W. H., Fingerhut, B. & Miller, H. (1965). Clin. Chem. 11, 624.CrossRefGoogle Scholar
Menke, K. H. (1979). Z. Tierphysiol., Tierernähr. Futtermittelk. 42, 175.CrossRefGoogle Scholar
Menke, K. H., Lantsch, H. J., Ehrensvärd, U. & Schneider, W. (1969). Landw. Forschung. 22, 173.Google Scholar
Miller, D. S. & Payne, P. R. (1964). Proc. Nutr. Soc. 23, 11.CrossRefGoogle Scholar
Müller, H. L. & Kirchgessner, M. (1974). Z. Tierphysiol. Tierernähr. Futtermittelk. 33, 113.Google Scholar
Münchow, H. & Bergner, H. (1967). Arch. Tierernähr. 17, 141.CrossRefGoogle Scholar
Münchow, H. & Bergner, H. (1968). Arch. Tierernähr. 18, 222.CrossRefGoogle Scholar
Munro, H. N. (1951). Physiol. Rev. 31, 449.CrossRefGoogle Scholar
Orok, E. J. & Bowland, J. P. (1975). Can. J. Anim. Sci. 55, 347.CrossRefGoogle Scholar
Petersen, U. (1978). Züchtungskunde 50, 26.Google Scholar
Piatkowski, B. & Jung, H. (1966). Arch. Tiersucht. 9, 307.Google Scholar
Risse, S., Dargel, D., Korschewitz, I. & Schulte, H. (1975). Arch. Tierernähr. 25, 469.CrossRefGoogle Scholar
Thorbek, G. (1975). Beretn. Forsøgslab., No. 424.Google Scholar
Verstegen, M. W. A., Close, W. H., Start, I. B. & Mount, L. E. (1973). Br. J. Nutr. 30, 21.CrossRefGoogle Scholar
Wenk, C., Pfirter, H. O. & Schurch, A. (1976). Z. Tierphysiol. Tierernähr. Futtermittelk. 36, 249.CrossRefGoogle Scholar
Wiesemüller, W. & Poppe, S. (1969). Arch. Tierernähr. 19, 133.CrossRefGoogle Scholar
Williams, A. P. & Smith, R. H. (1975). Br. J. Nutr. 33, 149.CrossRefGoogle Scholar
Wyllie, D., Speer, V. C., Ewan, R. C. & Hays, V. W. (1969). J. Anim. Sci. 29, 433.CrossRefGoogle Scholar
Zamora, R. G., Schmidt, M. K. & Veum, T. L. (1975). J. Anim. Sci. 41, 331.Google Scholar
Zimmerman, R. & Khajarern, S. (1973). J. Anim. Sci. 36, 189.CrossRefGoogle Scholar