Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T20:04:19.966Z Has data issue: false hasContentIssue false

Comparative Aspects of Gastrointestinal Phosphorus Metabolism

Published online by Cambridge University Press:  14 December 2007

Gerhard Breves
Affiliation:
Department of Veterinary Physiology, Justus Liebig University, Giessen, Germany
Bernd Schröder
Affiliation:
Department of Parasitology, Justus Liebig University, Giessen, Germany
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1991

References

REFERENCES

Audran, M. & Kumar, R. (1985). The physiology and pathophysiology of vitamin D. Mayo Clinic Proceedings 60, 851866.Google Scholar
Beardsworth, L. J., Beardsworth, P. M. & Care, A. D. (1989). The effect of ruminal phosphate concentration on the absorption of calcium, phosphorus and magnesium from the reticulo-rumen of the sheep. British Journal of Nutrition 61, 715723.Google Scholar
Ben-Ghedalia, D., Tagari, H. & Geva, A. (1982). Absorption by sheep of calcium, phoshorus and magnesium from a poultry litter supplemented diet. Journal of Agricultural Science 98, 8588.CrossRefGoogle Scholar
Ben-Ghedalia, D., Tagari, H., Zamwel, S. & Bondi, A. (1975). Solubility and net exchange of calcium, magnesium and phosphorus in digesta flowing along the gut of the sheep. British Journal of Nutrition 33, 8794.Google Scholar
Berner, W., Kinne, R. & Murer, H. (1976). Phosphate transport into brush-border membrane vesicles isolated from rat small intestine. Biochemical Journal 160, 467474.Google Scholar
Bilezikian, J. P., Canfield, R. E., Jacobs, T. P., Polay, J. S., D'Adamo, A. P., Eisman, J. A. & DeLuca, H. F. (1978). Response of 1α,25-dihydroxyvitamin D3 to hypocalcemia in human subjects. New England Journal of Medicine 299, 437441.Google Scholar
Bonilla, S. E. (1976). Phosphorus in the nutrition of sheep: composition of body fluids, microbial fermentation and feed intake. PhD Thesis, University of California, Davis.Google Scholar
Boxebeld, A., Guégen, L., Hannequart, G. & Durand, M. (1983). Utilization of phosphorus and calcium and minimal maintenance requirement for phosphorus in growing sheep fed a low-phosphorus diet. Reproduction, Nutrition, Développement 23, 10431053.Google Scholar
Brasitus, T. A., Dudeja, P. K., Eby, B. & Lau, K. (1986). Correction by 1,25-dihydroxycholecalciferol of the abnormal fluidity and lipid composition of enterocyte brush border membranes in vitamin D-deprived rats. Journal of Biological Chemistry 261, 1640416409.Google Scholar
Breves, G., Gäbel, G., Martens, H. & Höller, H. (1986). Phosphate fluxes across the rumen wall mucosa of sheep in vitro. Proceedings of the Nutrition Society 45, 99A.Google Scholar
Breves, G. & Höller, H. (1987 a). Effects of dietary phosphorus depletion in sheep on dry matter and organic matter digestibility. Journal of Animal Physiology and Animal Nutrition 58, 281286.Google Scholar
Breves, G. & Höller, H. (1987 b). Gastrointestinal nitrogen turnover in sheep fed non-protein nitrogen and a phosphorus-deficient diet. In Isotope Aided Studies on Non-Protein-Nitrogen and Agroindustrial By-Products Utilization by Ruminants, pp. 1929 [IAEA, editor]. Vienna: IAEA Publishing Series.Google Scholar
Breves, G., Höller, H., Packheiser, P., Gäbel, G. & Martens, H. (1988). Flux of inorganic phosphate across the sheep rumen wall in vivo and in vitro. Quarterly Journal of Experimental Physiology 73, 343351.Google Scholar
Breves, G., Rosenhagen, C. & Höller, H. (1987). Die Sekretion von anorganischem Phosphor mit dem Speichel bei P-depletierten Schafen (Saliva secretion of inorganic phosphorus in phosphorus-depleted sheep). Journal of Veterinary Medicine A 34, 4247.CrossRefGoogle Scholar
Breves, G., Ross, R. & Höller, H. (1985). Dietary phosphorus depletion in sheep: effects on plasma inorganic phosphorus, calcium, 1,25-(OH)2-Vit-D3 and alkaline phosphatase and on gastrointestinal P and Ca balances. Journal of Agricultural Science 105, 623629.Google Scholar
Bruce, J., Goodall, E. D., Kay, R. N. B., Phillipson, A. T. & Vowles, L. E. (1966/1967). The flow of organic and inorganic materials through the alimentary tract of the sheep. Proceedings of the Royal Society B 166, 4662.Google ScholarPubMed
Caniggia, A., Crennari, C., Bencini, M. & Palazzonli, V. (1968). Intestinal absorption of ratio-phosphate in osteomalacia before and after vitamin D treatment. Calcified Tissue Research 2, 299300.Google Scholar
Care, A. D., Barlet, J. P. & Abdel-Hafeez, H. M. (1980). Calcium and phosphate homeostasis in ruminants and its relationship to the aetiology and prevention of parturient paresis. In Digestive Physiology and Metabolism in Ruminants, pp. 429446 [Ruckebusch, Y. and Thivend, P. editors]. Lancaster: MTP Press.Google Scholar
Caverzasio, J., Danisi, G., Straub, R. W., Murer, H. & Bonjour, J. P. (1987). Adaption of phosphate transport to low phosphate diet in renal and intestinal brush border membrane vesicles: influence of sodium and pH. Pflügers Archiv 409, 333336.CrossRefGoogle ScholarPubMed
Chicco, C. F., Ammerman, C. B., Moore, J. E., van Walleghem, P. A., Arrington, L. R. & Shirley, R. L. (1965). Utilization of inorganic ortho-, meta- and pyrophosphates by lambs and by cellulolytic rumen microorganisms in vitro. Journal of Animal Science 24, 355363.Google Scholar
Cohen, R. D. H. (1975). Phosphorus and the grazing ruminant. World Review of Animal Production 11 (2), 2643.Google Scholar
Compton, J. S., Nelson, J., Wright, R. D. & Young, J. A. (1980). A micropuncture investigation of electrolyte transport in the parotid glands of sodium-replete and sodium-depleted sheep. Journal of Physiology 309, 429446.Google Scholar
Coroneo, M. T., Maier, H., Schindler, J. G. & Heidland, A. (1981). The secretion of ionized and total calcium, protein and inorganic phosphate by the salivary glands of rat and man. In Saliva and Salivation, pp. 289294 [Zelles, T. editor]. Oxford: Pergamon Press.CrossRefGoogle Scholar
Cramer, C. F. (1972). Aspects of intestinal absorption of Ca, P and Mg. Methods and progress. Methods and Achievements in Experimental Pathology 6, 172192.Google Scholar
Cross, H. S., Debiec, H. & Peterlik, M. (1990). Mechanism and regulation of intestinal phosphate absorption. Mineral and Electrolyte Metabolism 16, 115124.Google Scholar
Cross, H. S. & Peterlik, M. (1988). Cooperative effect of thyroid hormones and vitamin D on intestinal calcium and phosphate transport. In Cellular Calcium and Phosphate Transport in Health and Disease (Progress in Clinical and Biological Research 252), pp. 331336 [Bronner, F. and Peterlik, M. editors]. New York: Alan R. Liss, Inc.Google Scholar
Cross, H. S., Pölzleitner, D. & Peterlik, M. (1986). Intestinal phosphate and calcium absorption: joint regulation by thyroid hormones and 1,25-dihydroxyvitamin D3. Acta Endocrinologica, Copenhagen 113, 96103.Google Scholar
Danisi, G., Bonjour, J. P. & Straub, R. W. (1980). Regulation of the Na-dependent phosphate influx across the mucosal border of duodenum by 1,25-dihydroxycholecalciferol. Pflügers Archiv 388, 227232.Google Scholar
Danisi, G., Caverzasio, J., Trechsel, U., Straub, R. & Bonjour, J. P. (1988). Phosphate transport adaptation in intestinal brush border membrane vesicles (BBMV) and plasma levels of 1,25-dihydroxycholecalciferol. In Cellular Calcium and Phosphate Transport in Health and Disease (Progress in Clinical and Biological Research 252), pp. 6566 [Bronner, F. and Peterlik, M. editors]. New York: Alan R. Liss, Inc.Google Scholar
Danisi, G. & Straub, R. W. (1980). Unidirectional influx of phosphate across the mucosal membrane of rabbit small intestine. Pflügers Archiv 385, 117122.Google Scholar
Danisi, G., van Os, C. H. & Straub, R. W. (1984). Phosphate transport across brush border and basolateral membrane vesicles of small intestine. In Epithelial Calcium and Phosphate Transport: Molecular and Cellular Aspects, pp. 229234 [Bronner, F. and Peterlik, M. editors]. New York: Alan R. Liss, Inc.Google Scholar
Debiec, H. & Lorenc, R. (1988). Identification of Na+–Pi-binding protein in kidney and intestinal brush-border membranes. Biochemical Journal 255, 185191.Google Scholar
De Boland, A. R. & Norman, A. (1990). Evidence for involvement of protein kinase C and cyclic adenosine 3′,5′ monophosphate-dependent protein kinase in the 1,25-dihydroxyvitamin D3-mediated rapid stimulation of intestinal calcium transport, (transcaltachia). Endocrinology 127, 3945.CrossRefGoogle Scholar
DeLuca, H. F. (1988). The vitamin D story: a collaborative effort of basic science and clinical medicine. FASEB Journal 2, 224236.Google Scholar
Den Hartog, L. A., Huisman, J., Boer, H. & Schaijk, G. H. A. (1985). The effect of various carbohydrate sources on the digestibility of minerals in the small and large intestine of pigs. Statens Husdyrbrugsforsøg 580, 203206.Google Scholar
Drochner, W. (1984). Einfluß wechselnder Rohfaser- und Pektingehalte im Futter auf einige praecaecale und postileale Verdauungsvorgänge beim wachsenden Schwein (Influence of various fibre and pectin contents in the diet of precaecal and postileal digestion in growing pigs). Fortschritte in der Tierphysiologie und Tierenährung 14, p. 125.Google Scholar
Drüeke, T. & Lacour, B. (1983). Hormone regulation of intestinal calcium and phosphate transport. Effects of vitamin D, parathyroid hormone (PTH) and calcitonin (CT). In Intestinal Transport (Symposium 1982), pp. 249257 [Gilles-Baillien, M. and Gilles, R. editors]. Berlin, Heidelberg: Springer-Verlag.Google Scholar
Durand, M., Boxebeld, A., Dumay, C. & Beaumatin, P. (1983). Influence of the level of dietary phosphorus on urea utilization by rumen microorganisms in lambs. In Protein Metabolism and Nutrition, vol. 2, pp. 263266 [Pion, R., Arnal, M. and Bonin, D. editors]. Paris: INRA.Google Scholar
Edrise, B. M. & Smith, R. H. (1986). Exchanges of magnesium and phosphorus at different sites in the ruminant stomach. Archiv für Tierernährung 36, 10191027.Google Scholar
Engelhardt, W. von & Hauffe, R. (1975). Funktionen des Blättermagens bei kleinen Hauswiederkäuern. IV. Resorption und Sekretion von Elektrolyten (Functions of the omasum in small domestic ruminants. IV. Absorption and secretion of electrolytes). Journal of Veterinary Medicine 22, 363375.Google Scholar
Farries, F. E. & Krasnodebska, J. (1972). Untersuchungen über die Verwertung von Harnstoff bei Wiederkäuern. C. Einsatz halbsynthetischer Rationen. 8. Mitteilung: Zum Einfluß unterschiedlicher P-Versorgung (Utilisation of urea in ruminants. C. Use of semisynthetic diets. 8. Effect of different supplies of P on metabolism of N with feeds exclusively of NPN). Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 30, 3347.Google Scholar
Favus, M. J. (1985). Factors that influence absorption and secretion of calcium in the small intestine and colon. American Journal of Physiology 248, G147G157.Google Scholar
Favus, M. J. & Langman, C. B. (1986). Evidence for calcium-dependent control of 1,25-dihydroxyvitamin D3 production by rat kidney proximal tubules. Journal of Biological Chemistry 261, 1122411229.Google Scholar
Field, A. C., Suttle, N. F. & Nisbet, D. I. (1975). Effect of diets low in calcium and phosphorus on the development of growing lambs. Journal of Agricultural Science 85, 435442.Google Scholar
Fox, J., Pickard, D. W., Care, A. D. & Murray, T. M. (1978). Effect of low phosphorus diets on intestinal calcium absorption and the concentration of calcium-binding protein in intact and parathyroidectomized pigs. Journal of Endocrinology 78, 379387.Google Scholar
Fuchs, R. & Peterlik, M. (1979). Vitamin D-induced transepithelial phosphate and calcium transport by chick jejunum: effect of microfilamentous and microtubular inhibitors. FEBS Letters 100, 357359.Google Scholar
Fuchs, R. & Peterlik, M. (1980). Vitamin D-induced phosphate transport in intestinal brush border membrane vesicles. Biochemical and Biophysical Research Communications 93, 8792.CrossRefGoogle ScholarPubMed
Ghishan, F. K., Kikuchi, K. & Arab, N. (1987). Phosphate transport by rat intestinal basolateral-membrane vesicles. Biochemical Journal 243, 641646.Google Scholar
Grace, N. D. (1972). Studies on the movement of magnesium, calcium, phosphorus, sodium and potassium across the gut wall of sheep fed fresh pasture Proceedings of the New Zealand Society of Animal Production 32, 7784.Google Scholar
Grace, N. D., Ulyatt, M. J. & Macrae, J. C. (1974). Quantitative digestion of fresh herbage by sheep. III. The movement of Mg, Ca, P, K and Na in the digestive tract. Journal of Agricultural Science 82, 321330.Google Scholar
Gray, R. W. (1987). Evidence that somatomedins mediate the effect of hypophosphatemia to increase serum 1,25-dihydroxyvitamin D3 levels in rats. Endocrinology 121, 504512.CrossRefGoogle ScholarPubMed
Gray, R. W., Garthwaite, T. L. & Phillips, L. S. (1983). Growth hormone and triiodothyronine permit an increase in plasma 1,25-(OH)2D concentrations in response to dietary phosphate deprivation in hypophysectomized rats. Calcified Tissue International 35, 100106.Google Scholar
Greene, L. W., Webb, K. E. Jr & Fontenot, J. P. (1983). Effect of potassium level on site of absorption of magnesium and other macro-elements in sheep. Journal of Animal Science 56, 12141221.CrossRefGoogle Scholar
Guéguen, L., Besançon, P. & Rérat, A. (1968). Utilisation digestive, cinétique de l'absorption et efficacité de la rétention du phosphore phytique chez le porc (Digestive utilization, kinetics of absorption and efficiency of retention of phytic phosphorus in pigs). Annales de Biologie Animale, Biochimie, Biophysique 8, 273280.Google Scholar
Hall, O. G., Baxter, H. D. & Hobbs, C. S. (1961). Effect of phosphorus in different chemical forms on in vitro cellulose digestion by rumen microorganisms. Journal of Animal Science 20, 817819.Google Scholar
Harris, L. J. & Innes, J. R. M. (1931). The mode of action of vitamin D. Studies on hypervitaminosis D. The influence of the calcium-phosphate intake. Biochemical Journal 25, 367390.Google Scholar
Harrison, H. E. & Harrison, H. C. (1961). Intestinal transport of phosphate: action of vitamin D, calcium, and potassium. American Journal of Physiology 201, 10071012.CrossRefGoogle ScholarPubMed
Harrison, H. E. & Harrison, H. C. (1963). Sodium, potassium and intestinal transport of glucose, L-tyrosine, phosphate and calcium. American Journal of Physiology 205, 107111.Google Scholar
Hildmann, B., Storelli, C., Danisi, G. & Murer, H. (1982). Regulation of Na+-P1 cotransport by 1,25-dihydroxyvitamin D3 in rabbit duodenal brush border membrane. American Journal of Physiology 242, G533G539.Google Scholar
Höller, H., Breves, G. & Dubberke, M. (1988 a). Flux of inorganic phosphate and calcium across the isolated mucosa of the sheep omasum. Journal of Veterinary Medicine A 35, 709716.Google Scholar
Höller, H., Figge, A., Richter, J. & Breves, G. (1988 b). Nettoresorption von Calcium und anorganischen Phosphat aus dem perfundierten Colon und Rectum von Schafen (Calcium and inorganic phosphate net absorption from the sheep colon and rectum perfused in vivo). Journal of Animal Physiology and Animal Nutrition 59, 915.Google Scholar
Horst, R. L. (1986). Regulation of calcium and phosphorus homeostasis in the dairy cow. Journal of Dairy Science 69, 604616.Google Scholar
Jungbluth, H. & Binswanger, U. (1989). Unidirectional duodenal and jejunal calcium and phosphorus transport in the rat: Effects of dietary phosphorus depletion, ethane-1-hydroxy-1,1-diphosphonate and 1,25-dihydroxycholecalciferol. Research in Experimental Medicine 189, 439449.Google Scholar
Karsenty, G., Lacour, B., Ulmann, A., Piérandréi, E. & Drüeke, T. (1985 a). Phosphate fluxes in isolated enterocytes from vitamin D replete and vitamin D deficient rats – early effects of calcitriol. Pflügers Archiv 403, 151155.Google Scholar
Karsenty, G., Lacour, B., Ulmann, A., Piérandréi, E. & Drüeke, T. (1985 b). Early effects of vitamin D metabolites on phosphate fluxes in isolated rat enterocytes. American Journal of Physiology 248, G40G45.Google ScholarPubMed
Kay, R. N. B. (1960). The rate of flow and composition of various salivary secretions in sheep and calves. Journal of Physiology 150, 515537.Google Scholar
Kikuchi, K. & Ghishan, F. K. (1987). Phosphate transport by basolateral plasma membranes of human small intestine. Gastroenterology 93, 106113.CrossRefGoogle ScholarPubMed
Komisarczuk, S., Merry, R. J. & McAllan, A. B. (1987). Effect of different levels of phosphorus on rumen microbial fermentation and synthesis determined using a continuous culture technique. British Journal of Nutrition 57, 279290.Google Scholar
Korkor, A. B., Gray, R. W. & Henry, H. L. (1985). Evidence that cAMP mediates PTH stimulation of 25-OH-vitamin D3-lα-hydroxylase activity in cultured mouse kidney cells. Kidney International 29, 162.Google Scholar
Kowarski, S. & Schachter, D. (1969). Effects of vitamin D on phosphate transport and incorporation into mucosal constituents of rat intestinal mucosa. Journal of Biological Chemistry 244, 211217.Google Scholar
Lee, D. B. N., Hardwick, L. L., Hu, M. -S. & Jamgotchian, N. (1990). Vitamin D-independent regulation of calcium and phosphate absorption. Mineral and Electrolyte Metabolism 16, 167173.Google Scholar
Lee, D. B. N., Walling, M. W. & Corry, D. B. (1986 a). Phosphate transport across rat jejunum:influence of sodium, pH and 1,25-dihydroxyvitamin D3. American Journal of Physiology 251, G90G95.Google Scholar
Lee, D. B. N., Walling, M. W., Palant, C. E. & Tallos, E. (1986 b). Jejunal phosphate transport is not regulated by the PTH-adenylate cyclase system. Further studies on the contrasting features between intestinal and renal phosphate transport mechanisms. Mineral and Electrolyte Metabolism 12, 293297.Google Scholar
Lee, D. B. N., Walling, M. W., Silis, V., Gafter, U. & Coburn, J. W. (1980). Calcium and inorganic phosphate transport in rat colon. Dissociated response to 1,25-dihydroxyvitamin D3. Journal of Clinical Investigation 65, 13261331.Google Scholar
Lessmann, H. W. (1985). Der Einfluß einer diätetischen Phosphordepletion auf den Nettozuwachs an mikrobiell gebundenem Stickstoff im Pansen von Schafen (Effects of dietary P-depletion on net microbial yield from the rumen of sheep). Thesis, School of Veterinary Medicine, Hanover.Google Scholar
Luecke, H. & Quiocho, F. A. (1990). High specificity of a phosphate transport protein determined by hydrogen bonds. Nature 347, 402406.Google Scholar
McHardy, G. J. R. & Parsons, D. S. (1956). The absorption of inorganic phosphate from the small intestine of the rat. Quarterly Journal of Experimental Physiology 41, 398409.CrossRefGoogle Scholar
Mañas-Almendros, M., Ross, R. & Care, A. D. (1982). Factors affecting the secretion of phosphate in parotid saliva in the sheep and goat. Quarterly Journal of Experimental Physiology 67, 269280.Google Scholar
Maunder, E. M. W., Pillay, A. V. & Care, A. D. (1986). Hypophosphatemia and vitamin D metabolism in sheep. Quarterly Journal of Experimental Physiology 71, 391399.Google Scholar
Milton, J. T. B. & Ternouth, J. H. (1984). The effects of phosphorus upon in vitro microbial digestion. Animal Production in Australia 15, 472475.Google Scholar
Morgan, D. B. (1969). Calcium and phosphorus transport across the intestine. In Malabsorption. Pfizer Medical Monographs no. 4, p. 74 [Girdwood, R. H. and Smith, A. N. editors]. Baltimore: Williams & Wilkins.Google Scholar
Mulroney, S. E. & Haramati, A. (1990). Renal adaptation to changes in dietary phosphate during development. American Journal of Physiology 258, F1650F1656.Google ScholarPubMed
Murer, H. & Hildmann, B. (1981). Transcellular transport of calcium and inorganic phosphate in the small intestinal epithelium. American Journal of Physiology 240, G409G416.Google Scholar
Müschen, H., Petri, A., Breves, G. & Pfeffer, E. (1988). Response of lactating goats to low phosphorus intake. I. Milk yield and faecal excretion of P and Ca. Journal of Agricultural Science 111, 255263.CrossRefGoogle Scholar
Neer, R. M. (1979). Calcium and inorganic-phosphate homeostasis. In Endocrinology, vol. 2, pp. 669692 [DeGroot, L. J., Cahill, G. F. Jr, Martini, L., Nelson, D. H., Odell, W. D., Potts, J. T. Jr, Steinberger, E. and Winegrad, A. I. editors]. New York: Grune & Stratton.Google Scholar
Nicolaysen, R. (1937). Studies upon the mode of action of vitamin D. III. The influence of vitamin D on absorption of calcium and phosphorus in the rat. Biochemical Journal 31, 122129.Google Scholar
Nielsen, S. P. & Petersen, O. H. (1970). Excretion of magnesium, calcium, and inorganic phosphate by the cat submandibular gland. Pflügers Archiv 318, 6367.CrossRefGoogle ScholarPubMed
Noller, C. H., Castro, A. G., Wheeler, W. E., Hill, D. L. & Moeller, N. J. (1977). Effect of phosphorus supplementation on growth rate, blood minerals, and conception rate of dairy heifers. Journal of Dairy Science 60, 19321940.Google Scholar
Nordin, B. E. C. (1973). Metabolic Bone and Stone Disease. Edinburgh and London: Churchill Livingstone.Google Scholar
Parthasarathy, D. (1952). The absorption of certain elements from the alimentary tract of sheep. British Journal of Nutrition 6, V.Google Scholar
Parthasarathy, D., Garton, G. A. & Phillipson, A. T. (1952). The passage of phosphorus across the rumen epithelium of sheep. Biochemical Journal 52, XVIXVII.Google Scholar
Partridge, I. G., Simon, O. & Bergner, H. (1986). The effects of treated straw meal on ileal and faecal digestibility of nutrients in pigs. Archiv für Tierernährung 36, 351359.Google Scholar
Peerce, B. E. (1988). Identification and purification of the intestinal Na/phosphate cotransporter. In Cellular Calcium and Phosphate Transport in Health and Disease (Progress in Clinical and Biological Research 252), pp. 7380 [Bronner, F. and Peterlik, M. editors]. New York: Alan R. Liss, Inc.Google Scholar
Peerce, B. E. (1989). Identification of the intestinal Na–phosphorus cotransporter. American Journal of Physiology 256, G645G652.Google Scholar
Peterlik, M., Fuchs, R. & Cross, H. S. (1981). Phosphate transport in the intestine: cellular pathways and hormonal regulation. In Calcium and Phosphate Transport across Biomembranes, pp. 173179 [Bronner, F. and Peterlik, M. editors]. New York: Academic Press Inc.Google Scholar
Peterlik, M. & Wasserman, R. H. (1978). Effect of vitamin D on transepithelial phosphate transport in chick intestine. American Journal of Physiology 234, E379E388.Google Scholar
Petri, A., Müschen, H., Breves, G., Richter, O. & Pfeffer, E. (1988). Response of lactating goats to low phosphorus intake. 2. Nitrogen transfer from rumen ammonia to rumen microbes and proportion of milk protein derived from microbial amino acids. Journal of Agricultural Science 111, 265271.Google Scholar
Pfeffer, E. (1968). Untersuchungen über Mineralstoff-Bewegungen im Verdauungskanal von ausgewachsenen Hammeln. Habilitation Thesis, University of Göttingen.Google Scholar
Pfeffer, E., Thompson, A. & Armstrong, D. G. (1970). Studies on intestinal digestion in the sheep. 3. Net movement of certain inorganic elements in the digestive tract on rations containing different proportions of hay and rolled barley. British Journal of Nutrition 24, 197204.Google Scholar
Poppi, D. P. & Ternouth, J. H. (1979). Secretion and absorption of phosphorus in the gastrointestinal tract of sheep fed on four diets. Australian Journal of Agricultural Research 30, 503512.Google Scholar
Portale, A. A., Halloran, B. P. & Morris, R. C. Jr (1989). Physiologic regulation of the serum concentration of 1,25-dihydroxyvitamin D by phosphorus in normal men. Journal of Clinical Investigation 83, 14941499.CrossRefGoogle Scholar
Preston, R. L. & Pfander, W. H. (1964). Phosphorus metabolism in lambs fed varying phosphorus intakes. Journal of Nutrition 83, 369378.Google Scholar
Quamme, G. A. (1985). Phosphate transport in intestinal brush-border membrane vesicles: effect of pH and dietary phosphate. American Journal of Physiology 249, G168G176.Google Scholar
Radde, I. C., Davis, D., Sheepers, J. & McKercher, H. G. (1980). Bidirectional transmucosal 45Ca and 32P fluxes across the small intestine of the young piglet: Relationship to intestinal Ca2+-Mg2-ATPase activity and postnatal age. In Pediatric Diseases Related to Calcium, pp. 153163 [DeLuca, H. F. and Anast, C. S. editors]. Oxford: Blackwell Scientific Publications.Google Scholar
Rasmussen, H., Fontaine, O., Max, E. E. & Goodman, D. B. P. (1979). The effect of 1α-hydroxyvitamin D3 administration on calcium transport in chick intestine brush border membrane vesicles. Journal of Biological Chemistry 254, 29932999.Google Scholar
Reinhardt, T. A., Horst, R. L. & Goff, J. P. (1988). Calcium, phosphorus, and magnesium homeostasis in ruminants. Veterinary Clinics of North America: Food Animal Practice 4, 331350.Google Scholar
Sacktor, B. & Cheng, L. (1981). The effect of pH on the transport of phosphate by renal brush border membrane vesicles. In Calcium and Phosphate Transport across Biomembranes, pp. 117122 [Bronner, F. and Peterlik, M. editors]. New York: Academic Press, Inc.Google Scholar
Scarisbrick, R. & Ewer, T. K. (1951). The absorption of inorganic phosphate from the rumen of the sheep. Biochemical Journal 49, LXXIX.Google Scholar
Scharrer, E. (1985). Phosphate absorption at different intestinal sites in the developing lamb. Quarterly Journal of Experimental Physiology 70, 615621.Google Scholar
Schneider, K. M., Boston, R. C. & Leaver, D. D. (1987). Quantitation of phosphorus excretion in sheep by compartmental analysis. American Journal of Physiology 52, R720R731.Google Scholar
Schröder, B., Breves, G. & Pfeffer, E. (1990). Binding properties of duodenal 1,25-dihydroxyvitamin D3 receptors as affected by phosphorus depletion in lactating goats. Comparative Biochemistry and Physiology 96A, 495498.Google Scholar
Schultz, S. G., Curran, P. F., Chez, R. A. & Fuisz, R. E. (1967). Alanine and sodium fluxes across mucosal border of rabbit ileum. Journal of General Physiology 50, 12411260.CrossRefGoogle ScholarPubMed
Scott, D. (1988). Control of phosphorus balance in ruminants. In Aspects of Digestive Physiology in Ruminants, pp. 156174 [Dobson, A. and Dobson, M. J. editors]. Comstock Publishing Associates: Cornell University Press.Google Scholar
Scott, D. & Beastall, G. (1978). The effects of intravenous phosphate loading on salivary phosphate secretion and plasma parathyroid hormone levels in the sheep. Quarterly Journal of Experimental Physiology 63, 147156.Google Scholar
Scott, D., McLean, A. F. & Buchan, W. (1984). The effect of variation in phosphorus intake on net intestinal phosphorus absorption, salivary phosphorus secretion and pathway of excretion in sheep fed roughage diets. Quarterly Journal of Experimental Physiology 69, 439452.Google Scholar
Sevilla, C. C. & Ternouth, J. H. (1980). Effect of different dietary levels of calcium and phosphorus in sheep. Animal Production in Australia 13, 449.Google Scholar
Sevilla, C. C. & Ternouth, J. H. (1982). Effects of calcium and phosphorus depletion and repletion in lambs. Animal Production in Australia 14, 633.Google Scholar
Sheikh, M. S., Schiller, L. R. & Fordtran, J. S. (1990). In vivo intestinal absorption of calcium in humans. Mineral and Electrolyte Metabolism 16, 130146.Google Scholar
Shirazi-Beechey, S. P., Beechey, R. B., Penny, J., Vayro, S., Buchan, W. & Scott, D. (1991). Mechanisms of phosphate transport in sheep intestine and parotid gland: response to variation in dietary phosphate supply. Experimental Physiology 76, 231241.Google Scholar
Shirazi-Beechey, S. P., Gorvel, J. P. & Beechey, R. B. (1988). Intestinal phosphate transport: Localization, properties and identification, a progress report. In Cellular Calcium and Phosphate Transport in Health and Disease (Progress in Clinical and Biological Research 252), pp. 5964 [Bronner, F. and Peterlik, M. editors]. New York: Alan R. Liss, Inc.Google Scholar
Shirazi-Beechey, S. P., Kemp, R. B., Dyer, J. & Beechey, R. B. (1989). Changes in the function of the intestinal brush border membrane during the development of the ruminant habit in lambs. Comparative Biochemistry and Physiology 94B, 801806.Google Scholar
Sklan, D. & Hurwitz, S. (1985). Movement and absorption of major minerals and water in ovine gastrointestinal tract. Journal of Dairy Science 68, 16591666.Google Scholar
Smith, A. H., Kleiber, M., Black, A. L. & Baxter, C. F. (1955). Transfer of phosphate in the digestive tract. II. Sheep. Journal of Nutrition 57, 507527.Google Scholar
Smith, R. H. (1984). Minerals and rumen function. In Nuclear Techniques in Tropical Animal Diseases and Nutritional Disorders, pp. 7996 [IAEA, editor]. Vienna: IAEA Publishing Series.Google Scholar
Stamp, T. C. B. (1972). The intestinal absorption of phosphorus. Its relation to calcium absorption and its treatment with vitamin D in osteomalacia, parathyroid dysfunction and chronic renal failure. Clinical Science 42, 16P.Google Scholar
Tanaka, Y. & DeLuca, H. F. (1973). The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Archives of Biochemistry and Biophysics 154, 566574.Google Scholar
Théwis, A. & François, E. (1985). Intestinal absorption and secretion of total and lipid phosphorus in adult sheep fed chopped meadow hay. Reproduction, Nutrition, Développement 25, 389397.Google Scholar
Ussing, H. H. & Zerahn, K. (1951). Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiologica Scandinavica 23, 110127.Google Scholar
Walling, M. W. (1977). Intestinal calcium and phosphate transport: differential responses to vitamin D3 metabolites. American Journal of Physiology 233, E488E494.Google Scholar
Wasserman, R. H. (1988). Calcium and phosphate entry into cells: A brief overview. In Cellular Calcium and Phosphate Transport in Health and Disease (Progress in Clinical and Biological Research 252), pp. 313 [Bronner, F. and Peterlik, M. editors]. New York: Alan R. Liss, Inc.Google Scholar
Wasserman, R. H. & Taylor, A. N. (1976). Gastrointestinal absorption of calcium and phosphorus. In Handbook of Physiology, Section 7, Endocrinology, vol. 7, Parathyroid Gland, pp. 137155 [Aurbach, G. D. editor]. Washington, DC: American Physiology Society.Google Scholar
Wilkinson, R. (1976). Absorption of calcium, phosphorus and magnesium. In Calcium, Phosphate and Magnesium Metabolism, pp. 36112 [Nordin, B. E. C. editor]. New York: Churchill-Livingstone.Google Scholar
Wright, E. (1955). Site of phosphorus absorption in the sheep. Nature 176, 351352.Google Scholar
Wright, R. D., Blair-West, J. R., Nelson, J. F. & Tregear, G. W. (1984). Handling of phosphate by a parotid gland (ovine). American Journal of Physiology 246, F916F926.Google Scholar
Wylie, M. J., Fontenot, J. P. & Greene, L. W. (1985). Absorption of magnesium and other macro-minerals in sheep infused with potassium in different parts of the digestive tract. Journal of Animal Science 61, 12191229.Google Scholar
Yano, F., Sekiya, M., Kawashima, R. & Kumada, K. (1978). Transport of calcium, phosphorus and magnesium across the rumen wall. Japanese Journal of Zootechnical Science 49, 680686.Google Scholar
Young, J. A. & Schneyer, C. A. (1981). Composition of saliva in mammalia. Australian Journal of Experimental Biology and Medical Science 59, 153.Google Scholar