Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T21:23:30.654Z Has data issue: false hasContentIssue false

Perfusion of Isolated Human Placenta

Published online by Cambridge University Press:  28 February 2007

K. R Page
Affiliation:
University of Aberdeen, School of Biomedical Sciences, Physiology Division, Marischal College, AberdeenAB9 1AS
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Recent research on the placenta’
Copyright
The Nutrition Society

References

Abramovich, D. R., Dacke, C. G., Elcock, C. & Page, K. R. (1987). Effect of dinitrophenol on calcium transfer across the dually perfused human placental lobule. Journal of Physiology 386, 21P.Google Scholar
Barker, G., Boyd, R. D. H., Lear, G. H. & Sibley, C. P. (1987). Incomplete perfusion of the in vitro isolated human placental lobule. Journal of Physiology 394, 168P.Google Scholar
Bersinger, N. A., Malek, A. & Schneider, H. (1989). De novo synthesis of pregnancy specific and pregnancy associated proteins by the in vitro perfused human term placenta. In Placenta as a Model and a Source, pp. 5162 [Genbačev, O., Klopper, A. and Beaconsfield, R., editors]. New York: Plenum Press.CrossRefGoogle Scholar
Miller, R. K., Wier, P. J., Maulic, D. & di Sant'Agnese, P. A. (1985). Human placenta in vitro: Characterisation during 12th of dual perfusion. In In vitro Perfusion of Human Placental Tissue, Contributions to Gynecology and Obstetrics, vol. 13, pp. 7784 [Schneider, H and Dancis, J, editors]. Basel: Karger.CrossRefGoogle Scholar
Page, K. R., Abramovich, D. R., Aggett, P., Todd, A. & Dacke, C. G. (1988). The transfer of zinc across the term dually perfused human placental lobule. Quarterly Journal of Experimental Physiology 73, 585593.CrossRefGoogle ScholarPubMed
Page, K. R., Abramovich, D. R., Dacke, C. G., Henderson, K. & Klopper, A. (1989). Protein release by the in vitro human placental lobule when dually perfused by different protocols. In Placenta as a Model and a Source, pp. 1525 [Genbačev, O., Klopper, A. and Beaconsfield, R., editors]. New York: Plenum Press.CrossRefGoogle Scholar
Panigel, M. (1968). Placental perfusion. In Fetal Homeostasis, vol. 4, pp. 1525 [Wynn, G., editor]. New York: Appleton-Century-Crofts.Google Scholar
Stulc, J., Stulcova, B., Svihovec, J. & Brestak, M. (1989). Transcellular transport of Ca across the perfused human placental lobule. Placenta 10, 475.CrossRefGoogle Scholar
Sweiry, J. H., Page, K. R., Dacke, C. G., Abramovich, D. R. & Yudilevich, D. L. (1986). Evidence for saturable uptake mechanisms at maternal and fetal sides of the perfused human placenta by rapid paired-tracer dilution: Studies with calcium and choline. Journal of Developmental Physiology 8, 435446.Google ScholarPubMed
Williams, J. M. A., Abramovich, D. R., Dacke, C. G., Mayhew, T. M. & Page, K. R. (1990). Raised cAMP levels in human placental homogenates after treatment with Forskolin, bPTH(1–34) and IBMX. Bone 11, 377.CrossRefGoogle Scholar
Williams, J. M. A., Abramovich, D. R., Dacke, C. G., Mayhew, T. M. & Page, K. R. (1991). Inhibitor action on placental calcium transport. Calcified Tissue International 48, 712.CrossRefGoogle ScholarPubMed