1887

Abstract

Summary

A Kunjin (KUN) virus cDNA sequence of 10664 nucleotides was obtained and it encoded a single open reading frame for 3433 amino acids. Partial N-terminal amino acid analyses of KUN virus-specified proteins identified the polyprotein cleavage sites and the definitive gene order. The gene order relative to that proposed for yellow fever (YF) virus is as follows: KUN 5′-C·GP20·E·GP44·P19·P10·P71·(?)·P21·P98-3′ YF 5′-C·prM·E·NS1·ns2a·ns2b·NS3·ns4a·ns4b·NS5-3′. The order of putative signal sequences and stop transfer sequences indicated that KUN NS1, NS2A and NS4B are probably cleaved in the lumen of the endoplasmic reticulum, at a consensus site Val-X-Ala↓ where X is an uncharged residue, and NS2B, NS3 and NS5 are cleaved in the cytosol at the site Lys-Arg↓Gly. Comparisons with the complete amino acid sequences of YF and West Nile (WN) viruses showed that KUN virus shared 93% homology with WN virus, but only 46% homology with YF virus. Comparisons among individual gene products of six flaviviruses showed that E, NS1, NS3 and NS5 tended to be the most highly conserved, and C among the least conserved. Homologous cleavage sites were evident, and six domains in NS5, a total of over 170 residues, shared at least 85% homology. Comparisons with the KUN C to NS2B sequence defined a gradient of relationships of all gene products in decreasing order WN > Murray Valley > Japanese encephalitis > St Louis encephalitis viruses within this closely related serological complex. A non-coding 5′ sequence (75 nucleotides) of KUN virus shared 95% homology with WN virus and a shorter imperfect match with Murray Valley encephalitis virus (15 of 18 nucleotides). The KUN non-coding 3′ sequence of 290 nucleotides contained several short and imperfectly matched sequences, and shared 87% homology over the distal region of 191 nucleotides with the corresponding region of WN virus RNA.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-69-1-1
1988-01-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/69/1/JV0690010001.html?itemId=/content/journal/jgv/10.1099/0022-1317-69-1-1&mimeType=html&fmt=ahah

References

  1. BACHMAIR A., FINLEY D., VARSHAVSKY A. 1986; In vivo half life of a protein is a function of its amino-terminal residue. Science 234:179–186
    [Google Scholar]
  2. BIEDRZYCKA A., CAUCHI M. R., BARTHOLOMEUSZ A., GORMAN J. J., WRIGHT P. J. 1987; Characterization of protease cleavage sites involved in the formation of the envelope glycoprotein and three non-structural proteins of dengue virus type 2, New Guinea C strain. Journal of General Virology 68:1317–1326
    [Google Scholar]
  3. BOWEN E. T. W., SIMPSON D. I. H., PLATT G. S., WAY H. J., SMITH C. E. G., CHING C. Y., CASALS J. 1970; Arbovirus infection in Sarawak: the isolation of Kunjin virus from mosquitoes of the Culex pseudovishnui group. Annals of Tropical Medicine and Parasitology 64:263–268
    [Google Scholar]
  4. CASTLE E., WENGLER G. 1987; Nucleotide sequence of the 5′-terminal untranslated part of the genome of the flavivirus West Nile virus. Archives of Virology 92:309–313
    [Google Scholar]
  5. CASTLE E., NOWAK T., LEIDNER U., WENGLER G., WENGLER G. 1985; Sequence analysis of the viral core protein and the membrane associated proteins V1 and NV2 of the flavivirus West Nile virus and of the genome sequence for these proteins. Virology 145:227–236
    [Google Scholar]
  6. CASTLE E., LEIDNER U., NOWAK T., WENGLER G., WENGLER G. 1986; Primary structure of the West Nile flavivirus genome region coding for all nonstructural proteins. Virology 149:10–26
    [Google Scholar]
  7. CHAN Y-L., OLVERA J., WOOL G. 1983; The structure of rat 28S ribosomal ribonucleic acid inferred from the sequence of nucleotides in a gene. Nucleic Acids Research 11:7819–7831
    [Google Scholar]
  8. CHU P. W. G., WESTAWAY E. G. 1985; Replication strategy of Kunjin virus: evidence for recycling role of replicative form RNA as a template in semiconservative and asymmetric replication. Virology 140:68–79
    [Google Scholar]
  9. CRAWFORD G. R., WRIGHT P. J. 1987; Characterization of novel viral polyproteins detected in cells infected by the flavivirus Kunjin and radiolabelled in the presence of the leucine analogue hydroxyleucine. Journal of General Virology 68:365–376
    [Google Scholar]
  10. DALGARNO L., TRENT D. W., STRAUSS J. H., RICE C. M. 1986; Partial nucleotide sequence of the Murray Valley encephalitis virus genome. Comparison of the encoded polypeptides with yellow fever virus structural and non-structural proteins. Journal of Molecular Biology 187:309–323
    [Google Scholar]
  11. DEUBEL V., KINNEY R. M., TRENT D. W. 1986; Nucleotide sequence and deduced amino acid sequence of the structural proteins of dengue type 2 virus, Jamaica genotype. Virology 155:365–377
    [Google Scholar]
  12. EDMAN P., BEGG G. 1967; A protein sequenator. European Journal of Biochemistry 1:80–91
    [Google Scholar]
  13. KOCH G., KOCH F., BILELLO J. A., HILLER E., SCHARLI C, WARNECKE G., WEBER C. 1982 Biosynthesis, modification and processing of viral polyproteins. Protein Biosynthesis in Eukaryotes275–309 Edited by Perez-Bercoff R. New York: Plenum Press;
    [Google Scholar]
  14. KOZAK M. 1983; Comparison of initiation of protein synthesis in procaryotes, eucaryotes and organelles. Microbiological Reviews 47:1–45
    [Google Scholar]
  15. KYTE J., DOOLITTLE R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–135
    [Google Scholar]
  16. LOBIGS M., WEIR R. C., DALGARNO L. 1986; Genetic analysis of Kunjin virus isolates using HaeIII and TaqI restriction digests of single-stranded cDNA to virion RNA. Australian Journal of Experimental Biology and Medical Science 64:185–196
    [Google Scholar]
  17. LYAPUSTIN V. N., SVITKIN YU. V., UGAROVA T. YU., LASHKEVICH V. A., AGOL V. A. 1968; A tentative model of formation of structural proteins of tick-borne encephalitis virus (flavivirus). FEBS Letters 200:314–316
    [Google Scholar]
  18. McADA P. C, MASON P. W., SCHMALJOHN C. S., DALRYMPLE J. M., MASON T. L., FOURNIER M. J. 1987; Partial nucleotide sequence of the Japanese encephalitis virus genome. Virology 158:348–360
    [Google Scholar]
  19. McCLAIN K., STEWART M., SULLIVAN M., MAIZEL J. V. 1981; Ribosomal binding sites on poliovirus RNA. Virology 113:150–167
    [Google Scholar]
  20. McCLURE M. A., PERRAULT J. 1985; Poliovirus genome RNA hybridizes specifically to higher eukaryotic rRNAs. Nucleic Acids Research 13:6797–6816
    [Google Scholar]
  21. MANIATIS T., FRITSCH E. F., SAMBROOK J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. MESSING G. J. 1983; New M13 vectors for cloning. Methods in Enzymology 101:20–78
    [Google Scholar]
  23. MONATH T. P. 1986 Pathobiology of the flaviviruses. The Togaviridae and Flaviviridae375–440 Edited by Schlesinger S., Schlesinger M. J. New York: Plenum Press;
    [Google Scholar]
  24. OKAYAMA H., BERG P. 1982; High efficiency cloning of full-length cDNA. Molecular and Cellular Biology 2:161–170
    [Google Scholar]
  25. PETERSEN R. B., HACKETT P. B. 1985; Characterization of ribosome binding on Rous sarcoma virus RNA in vitro. Journal of Virology 56:683–690
    [Google Scholar]
  26. PORTERFIELD J. S. 1980 Antigenic characteristics and classification of Togaviridae. The Togaviruses13–46 Edited by Schlesinger R. W. New York: Academic Press;
    [Google Scholar]
  27. QUEEN C., KORN L. J. 1984; A comprehensive sequence analysis program for the IBM personal computer. Nucleic Acids Research 12:581–599
    [Google Scholar]
  28. RICE C. M., LENCHES E. M., EDDY S. E., SHIN S. J., SHEETS R. L., STRAUSS J. H. 1985; Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726–733
    [Google Scholar]
  29. RICE C. M., AEBERSOLD R., TEPLOW D. B., PATA J., BELL J. R., VORNDAM A. V., TRENT D. W., BRANDRISS M. W., SCHLESINGER J. J., STRAUSS J. H. 1986a; Partial N-terminal amino acid sequences of three nonstructural proteins of two flaviviruses. Virology 151:1–9
    [Google Scholar]
  30. RICE C. M., STRAUSS E. G., STRAUSS J. H. 1986b Structure of the flavivirus genome. The Togaviridae and Flaviviridae279–326 Edited by Schlesinger S., Schlesinger M. J. New York: Plenum Press;
    [Google Scholar]
  31. ROGERS S., WELLS R., RECHSTEINER M. 1986; Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364–368
    [Google Scholar]
  32. SABATINI D. D., KREIBICH G., MORIMOTO T., ADESNIK M. 1982; Mechanisms for the incorporation of proteins in membranes and organelles. Journal of Cell Biology 42:1–22
    [Google Scholar]
  33. SANGER F., NICKLEN S., COULSEN A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 74:5463–5467
    [Google Scholar]
  34. SMITH G. W., WRIGHT P. J. 1985; Synthesis of proteins and glycoproteins in dengue type 2 virus-infected Vero and Aedes albopictus cells. Journal of General Virology 66:559–571
    [Google Scholar]
  35. SPEIGHT G., COIA G., PARKER M. D., WESTAWAY E. G. 1988; Gene mapping and positive identification of the non-structural proteins NS2A, NS2B, NS3, NS4B and NS5 of the flavivirus Kunjin and their cleavage sites. Journal of General Virology 69:23–34
    [Google Scholar]
  36. STADEN R. 1986; The current status and portability of our sequence handling software. Nucleic Acids Research 14:217–231
    [Google Scholar]
  37. SUMIYOSHI H., MORITA K., MORI C, FUKE I., SHIBA T., SAKAKI Y., IGARASHI A. 1986; Sequence of 3000 nucleotides at the 5′ end of Japanese encephalitis virus RNA. Gene 48:195–201
    [Google Scholar]
  38. TAKIO K., TOWATORI T., KATANUMA N., TELLER D. C., TITANI K. 1983; Homology of amino acid sequences of rat liver cathepsins B and H with that of papain. Proceedings of the National Academy of Sciences, U.S.A 80:3666–3670
    [Google Scholar]
  39. TORCZYNSKI R. M., FUKE M., BOLLON A. P. 1985; Cloning and sequencing of a human 18S ribosomal RNA gene. DNA 4:283–291
    [Google Scholar]
  40. TRENT D. W., KINNEY R. M., JOHNSON B. J. B., VORNDAM A. V., GRANT J. A., DEUBEL V., RICE C. M., HAHN C. 1987; Partial nucleotide sequence of St. Louis encephalitis virus RNA: structural proteins, NS1, ns2a and ns2b. Virology 156:293–304
    [Google Scholar]
  41. VON HEUNE G. 1985; Signal sequences. The limits of variation. Journal of Molecular Biology 184:99–105
    [Google Scholar]
  42. WENGLER G., CASTLE E. 1986; Analysis of structural properties which possibly are characteristic for the 3′-terminal sequence of the genome RNA of flaviviruses. Journal of General Virology 67:1183–1188
    [Google Scholar]
  43. WENGLER G., BEATO M., WENGLER G. 1979; In vitro translation of 42S virus-specific RNA from cells infected with the flavivirus West Nile virus. Virology 96:516–529
    [Google Scholar]
  44. WENGLER G., CASTLE E., LEIDNER U., NOWAK T., WENGLER G. 1985; Sequence analysis of the membrane protein V3 of the flavivirus West Nile virus and of its gene. Virology 147:264–274
    [Google Scholar]
  45. WESTAWAY E. G. 1973; Proteins specified by group B togaviruses in mammalian cells during productive infections. Virology 51:454–465
    [Google Scholar]
  46. WESTAWAY E. G. 1987; Flavivirus replication strategy. Advances in Virus Research 33:45–90
    [Google Scholar]
  47. WESTAWAY E. G., SHEW M. 1977; Proteins and glycoproteins specified by the flavivirus Kunjin. Virology 80:309–319
    [Google Scholar]
  48. WESTAWAY E. G., GOODMAN M. R. 1987; Variation in distribution of the three flavivirus-specified glycoproteins detected by immunofluorescence in infected Vero cells. Archives of Virology 94:215–228
    [Google Scholar]
  49. WESTAWAY E. G., SCHLESINGER R. W., DALRYMPLE J. M., TRENT D. W. 1980; Nomenclature of flavivirus-specified proteins. Intervirology 14:114–117
    [Google Scholar]
  50. WESTAWAY E. G., SPEIGHT G, ENDO L. 1984; Gene order of translation of the flavivirus Kunjin: further evidence of internal initiation in vivo. Virus Research 1:333–350
    [Google Scholar]
  51. WESTAWAY E. G., BRINTON M. A., GAIDAMOVICH S. YA., HORZINEK M. C, IGARASHI A., KÄÄRIÄINEN L., LVOV D. K., PORTERFIELD J. S., RUSSELL P. K., TRENT D. W. 1985; Flaviviridae. Intervirology 24:183–192
    [Google Scholar]
  52. WRIGHT P. J. 1982; Envelope protein of the flavivirus Kunjin is apparently not glycosylated. Journal of General Virology 59:29–38
    [Google Scholar]
  53. WRIGHT P. J., WARR H. M. 1985; Peptide mapping of envelope-related glycoproteins specified by the flaviviruses Kunjin and West Nile. Journal of General Virology 66:597–601
    [Google Scholar]
  54. WRIGHT P. J., WESTAWAY E. G. 1977; Comparisons of the peptide maps of Kunjin virus proteins smaller than the envelope protein. Journal of Virology 24:662–672
    [Google Scholar]
  55. WRIGHT P. J., BOWDEN D. S., WESTAWAY E. G. 1977; Unique peptide maps of the three largest proteins specified by the flavivirus Kunjin. Journal of Virology 24:651–661
    [Google Scholar]
  56. WRIGHT P. J., WARR H. M., WESTAWAY E. G. 1980; Preliminary characterization of the glycopeptides derived from glycoproteins specified by the flavivirus Kunjin. Virology 104:482–486
    [Google Scholar]
  57. WRIGHT P. J., WARR H. M., WESTAWAY E. G. 1981; Synthesis of glycoproteins in cells infected by the flavivirus Kunjin. Virology 109:418–427
    [Google Scholar]
  58. ZHAO B., MACKOW E., BUCKLER-WHITE A., MARKOFF L., CHANOCK R. M., LAI C-J., MAKINO Y. 1986; Cloning full-length dengue type 4 viral DNA sequences: analysis of genes coding for structural proteins. Virology 155:77–88
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-69-1-1
Loading
/content/journal/jgv/10.1099/0022-1317-69-1-1
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error