1887

Abstract

SUMMARY

The amino acid sequence RGD (arginine-glycine-aspartic acid) is highly conserved in the VP1 protein of foot-and-mouth disease virus (FMDV), despite being situated in the immunodominant hypervariable region between amino acids 135 and 160. RGD-containing proteins are known to be important in promoting cell attachment in several different systems, and we report here that synthetic peptides containing this sequence are able to inhibit attachment of the virus to baby hamster kidney (BHK) cells. Inhibition was dose-dependent and could be reversed on removal of the peptide. A synthetic peptide corresponding to a portion of the same hypervariable region but not containing the RGD sequence did not inhibit virus attachment under the same conditions. Antibody against the RGD region of VP1 blocked attachment of the virus to BHK cells, and neutralizing monoclonal antibodies, which neutralize virus by preventing cell attachment, were blocked by RGD-containing peptides from binding virus in an ELISA test. Cleavage of the C-terminal region of virus VP1 with proteolytic enzymes reduced cell attachment, and antiserum against a peptide corresponding to this region was also able to inhibit attachment of virus to BHK cells. These results indicate that the amino acid sequence RGD at positions 145 to 147 and amino acids from the C-terminal region of VP1 (positions 203 to 213) contribute to the cell attachment site on FMDV for BHK cells.

Keyword(s): amino acid sequence , attachment and FMDV
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-3-625
1989-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/3/JV0700030625.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-3-625&mimeType=html&fmt=ahah

References

  1. Akiyama S. K., Yamada K. M. 1985; Synthetic peptides competitively inhibit both direct binding to fibroblasts and functional biological assays for the purified cell-binding domain of fibronectin. Journal of Biological Chemistry 260:10402–10405
    [Google Scholar]
  2. Baxt B., Bachrach H. L. 1980; Early interactions of foot-and-mouth disease virus with cultured cells. Virology 104:42–55
    [Google Scholar]
  3. Bittle J. L., Houghten R. A., Alexander H., Shinnick T. M., Rowlands D. J., Brown F. 1982; Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence. Nature, London 298:30–33
    [Google Scholar]
  4. Brown F., Cartwright B. 1963; Purification of radioactive foot-and-mouth disease virus. Nature, London 199:1168–1170
    [Google Scholar]
  5. Brown F., Cartwright B., Stewart D. L. 1962; Further studies on the infection of pig kidney cells by foot-and-mouth disease virus. Biochimica et bwphysica acta 55:768–774
    [Google Scholar]
  6. Cavanagh D. 1976 The early interaction of foot-and-mouth disease virus with host cells. Ph.D. thesis University of Reading;
    [Google Scholar]
  7. Cavanagh D., Sangar D. V., Rowlands D. J., Brown F. 1977; Immunogenic and cell attachment sites of FMDV: further evidence for their location on a single capsid polypeptide. Journal of General Virology 35:149–158
    [Google Scholar]
  8. Cheresh D. A., Pierschbacher M. D., Herzig M. A., Mujoo K. 1986; Disialogangliosides GD2 and GD3 are involved in the attachment of human melanoma and neuroblastoma cells to extracellular matrix proteins. Journal of Cell Biology 102:688–696
    [Google Scholar]
  9. Cheresh D. A., Pytela R., Pierschbacher M. D., Klier F. G., Ruoslahti E., Reisfeld R. A. 1987; An Arg-Gly- Asp-directed receptor on the surface of human melanoma cells exists in a divalent cation-dependent functional complex with the disialoganglioside GD2. Journal of Cell Biology 105:1163–1173
    [Google Scholar]
  10. Dedhar S., Ruoslahti E., Pierschbacher M. D. 1987; A Cell surface receptor complex for collagen type 1 recognises the Arg-Gly-Asp sequence. Journal of Cell Biology 104:585–593
    [Google Scholar]
  11. Fuller S. D., Argos P. 1987; Is Sindbis a simple picornavirus with an envelope?. EMBO Journal 6:1099–1105
    [Google Scholar]
  12. Gabius H.-J., Springer W. R., Barondes S. H. 1985; Receptor for the cell binding site of discoidin 1. Cell 43:449–156
    [Google Scholar]
  13. Gartner T. K., Bennett J. S. 1985; The tetrapeptide analogue of the cell attachment site of fibronectin inhibits platelet aggregation and fibrinogen binding to activated platelets. Journal of Biological Chemistry 260:11891–11894
    [Google Scholar]
  14. Geysen M. H., Barteling S. J., Meloen R. H. 1985; Small peptides induce antibodies with a sequence and structural requirement for binding antigen comparable to antibodies raised against the native protein. Proceedings of the National Academy of SciencesU.S.A 82178–182
    [Google Scholar]
  15. Haverstick D. M., Cowan J. F., Yamada K. M., Santoro S. A. 1985; Inhibition of platelet adhesion to fibronectin, fibrinogen, and von Willebrand factor substrates by a synthetic tetrapeptide derived from the cell-binding domain of fibronectin. Blood 66:946–952
    [Google Scholar]
  16. Hayman E. G., Pierschbacher M. D., Ruoslahti E. 1985; Detachment of cells from culture substrate by soluble fibronectin peptides. Journal of Cell Biology 100:1948–1954
    [Google Scholar]
  17. Humphries M. J., Akiyama S. K., Komoriya K., Olden K., Yamada K. M. 1986; Identification of an alternatively spliced site in human plasma fibronectin that mediates cell type-specific adhesion. Journal of Cell Biology 103:2637–2647
    [Google Scholar]
  18. Iwamoto Y., Robey F. A., Graf J., Sasaki M., Kleinman H. K., Yamada Y., Martin G. R. 1987; Yigsr, A synthetic laminin pentapeptide, inhibits experimental metastasis formation. Science 238:1132–1134
    [Google Scholar]
  19. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  20. Lam S. C.-T., Plow E. F., Smith M. A., Andrieux A., Ryckwaert J.-J., Marguerie G., Ginsberg M. H. 1987; Evidence that arginyl-glycyl-aspartate peptides and fibrinogen chain peptides share a common binding site on platelets. Journal of Biological Chemistry 262:947–950
    [Google Scholar]
  21. Morrell D. J., Mellor E. J. C., Rowlands D. J., Brown F. 1987; Surface structure and RNA-protein interactions of foot-and-mouth disease virus. Journal of General Virology 68:1649–1658
    [Google Scholar]
  22. Oldberg A., Franzen A., Heinegard R. 1986; Cloning And Sequence Analysis Of Rat Bone Sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proceedings of the National Academy of SciencesU.S.A 838819–8823
    [Google Scholar]
  23. Parry N. R., Ouldridge E. J., Barnett P. V., Rowlands D. J., Brown F., Bittle J. L., Houghten R. A., Lerner R. A. 1985; Identification of neutralizing epitopes of foot-and-mouth disease virus. In Vaccines 85211–216 Lerner R. A., Chanock R. M., Brown F. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Pierschbacher M. D., Ruoslahti E. 1984a; Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, London 309:30–33
    [Google Scholar]
  25. Pierschbacher M. D., Ruoslahti E. 1984b; Variants Of the cell recognition site of fibronectin that retain attachment-promoting activity. Proceedings of the National Academy of SciencesU.S.A 815985–5988
    [Google Scholar]
  26. Pierschbacher M. D., Ruoslahti E. 1987; Influence of Stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding-specificity in cell-adhesion. Journal of Biological Chemistry 262:17294–17298
    [Google Scholar]
  27. Plow E. F., Pierschbacher M. D., Ruoslahti E., Marguerie G. A., Ginsberg M. H. 1985; The effect of Arg- Gly-Asp-containing peptides on fibrinogen and von Willebrand factor binding to platelets. Proceedings of the National Academy of SciencesU.S.A 828057–8061
    [Google Scholar]
  28. Pytela R., Pierschbacher M. D., Ruoslahti E. 1985; A 125/115-KDa cell surface receptor specific for vitronectin interacts with the arginine-glycine-aspartic acid adhesion sequence derived from fibronectin. Proceedings of the National Academy of SciencesU.S.A 825766–5770
    [Google Scholar]
  29. Rossmann M. G., Arnold E., Erickson J. W., Frankenberger E. A., Griffith J. P., Hecht H.-J., Johnson J. E., Kamer G., Lou M., Mosser A. G., Rueckert R. R., Sherry B., Vriend G. 1985; Structure of a human common cold virus and functional relationship to other picornaviruses. Nature, London 317:145–153
    [Google Scholar]
  30. Ruggeri Z. M., Houghten R. A., Russell S. R., Zimmerman T. S. 1986; Inhibition of platelet function with synthetic peptides designed to be high-affinity antagonists of fibrinogen binding to platelets. Proceedings of the National Academy of SciencesU.S.A 835708–5712
    [Google Scholar]
  31. Ruoslahti E., Pierschbacher M. D. 1987; New perspectives in cell adhesion: RGD and integrins. Science 238:491–497
    [Google Scholar]
  32. Santoro S. A., La Wing W. J. 1987; Competition for related but non-identical binding sites on the glycoprotein Hb-IIIa complex by peptides derived from platelet adhesive proteins. Cell 48:867–873
    [Google Scholar]
  33. Sekiguchi K., Franke A. J., Baxt B. 1982; Competition for cellular receptor sites among selected aphthoviruses. Archives of Virology 74:53–64
    [Google Scholar]
  34. Springer W. R., Cooper D. N. W., Barondes S. H. 1984; Discoidin I is implicated in cell-substratum attachment and ordered cell migration of Dictyostelium discoideum and resembles fibronectin. Cell 39:557–564
    [Google Scholar]
  35. Strohmaier K., Franze R., Adam K. H. 1982; Location and characterization of the antigenic portion of the FMDV immunizing protein. Journal of General Virology 59:295–306
    [Google Scholar]
  36. Tamkun J. W., Desimone D. W., Fonda D., Patel R. S., Buck C, Horwitz A. F., Hynes R. O. 1986; Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46:271–282
    [Google Scholar]
  37. Wild T. F., Brown F. 1967; Nature of inactivating action of trypsin on foot-and-mouth disease virus. Journal of General Virology 1:247–250
    [Google Scholar]
  38. Wild T. F., Burroughs J. N., Brown F. 1969; Surface structure of foot-and-mouth disease virus. Journal of General Virology 4:313–320
    [Google Scholar]
  39. Wright S. D., Reddy P. A., Jong M. T. C., Erickson B. W. 1987; C3bi receptor (complement receptor type 3) recognizes a region of complement protein C3 containing the sequence Arg-Gly-Asp. Proceedings of the National Academy of SciencesU.S.A 841965–1968
    [Google Scholar]
  40. Yamada K. M., Kennedy D. W. 1985; Amino acid sequence specificities of an adhesive recognition signal. Journal of Cellular Biochemistry 28:99–104
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-3-625
Loading
/content/journal/jgv/10.1099/0022-1317-70-3-625
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error