1887

Abstract

A panel of six monoclonal antibodies recognizing at least three different antigenic regions has been raised against the LI major capsid protein of human papillomavirus type 33 (HPV-33), which is associated with cervical carcinoma. The antigenic sites defined by these antibodies have been mapped and classified as type- restricted or broadly cross-reactive using bacterially expressed LI fusion proteins of a variety of HPV types. Conformational and linear epitopes have been distinguished using native and denatured virus-like particles. HPV infection of genital lesions has been analysed using both monoclonal antibodies and DNA amplification by PCR. The antibodies obtained should be useful to probe the structure of HPV capsids and to develop a general assay for the detection and classification of productive HPV infections.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-12-3375
1994-12-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/12/JV0750123375.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-12-3375&mimeType=html&fmt=ahah

References

  1. Alonso M. J., Gomez F., Munoz E., Abad M. M., Roldan M., Curiel I., Paz J. I., Bullon A., Lopez Bravo A. 1992; Comparative study of in situ hybridization and immunohistochemical techniques for the detection of human papillomavirus in lesions of the uterine cervix. European Journal of Histochemistry 36:271–278
    [Google Scholar]
  2. Cason J., Patel D., Naylor J., Lunney D., Shepherd P. S., Best J. M., Mccance D. J. 1989; Identification of immunogenic regions of the major coat protein of human papillomavirus type 16 that contain type-restricted epitopes. Journal of General Virology 70:2973–2987
    [Google Scholar]
  3. Cole S. T., Danos O. 1987; Nucleotide sequence and comparative analysis of the human papillomavirus type 18 genome. Phylogeny of papillomaviruses and repeated structure of the E6 and E7 gene products. Journal of Molecular Biology 193:599–608
    [Google Scholar]
  4. Cole S. T., Streeck R. E. 1986; Genome organization and nucleotide sequence of human papillomavirus type 33, which is associated with cervical cancer. Journal of Virology 58:991–995
    [Google Scholar]
  5. Cowsert M., Lake P., Jenson A. B. 1987; Topographical and conformational epitopes of bovine papillomavirus type 1 defined by monoclonal antibodies. Journal of the National Cancer Institute 79:1053–1057
    [Google Scholar]
  6. Danos O., Katinka M., Yaniv M. 1982; Human papillomavirus la complete DNA sequence: a novel type of genome organization among papovaviridae. EMBO Journal 1:231–236
    [Google Scholar]
  7. Dartmann K., Schwarz E., Gissmann L., Zurhausen H. 1986; The nucleotide sequence and genome organization of human papillomavirus type 11. Virology 151:124–130
    [Google Scholar]
  8. De Villiers E. M. 1989; Heterogeneity of the human papillomavirus group. Journal of Virology 63:4898–4903
    [Google Scholar]
  9. Dillner L., Heino P., Moreno-Lopez J., Dillner J. 1991; Antigenic and immunogenic epitopes shared by human papillomavirus type 16 and bovine, canine, and avian papillomaviruses. Journal of Virology 91:6862–6871
    [Google Scholar]
  10. Fieser T. M., Tainer J. A., Geysen H. M., Houghten R. A., Lerner R. A. 1987; Influence of protein flexibility and peptide conformation on reactivity of monoclonal anti-peptide antibodies with a protein α-helix. Proceedings of the National Academy of Sciences U.S.A: 848568–8572
    [Google Scholar]
  11. Firzlaff J. M., Kiviat N. B., Beckmann A. M., Jenison S. A., Galloway D. A. 1988; Detection of human papillomavirus capsid antigens in various squamous epithelial lesions using antibodies directed against the LI and L2 open reading frames. Virology 164:467–477
    [Google Scholar]
  12. Fuchs P. G., Iftner T., Weninger J., Pfister H. 1986; Epidermodysplasia verruciformis-associated human papillomavirus 8: genomic sequence and comparative analysis. Journal of Virology 58:626–634
    [Google Scholar]
  13. Galfre G., Howe S. C., Milstein C., Butcher G. W., Howard J. C. 1977; Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature; London: 266550–552
    [Google Scholar]
  14. Gupta J. W., Gupta P. K., Rosenshein N., Shah K. V. 1987; Detection of human papillomavirus in cervical smears. A comparison of in situ hybridization, immunocytochemistry and cytopathology. Acta cytologica 31:387–396
    [Google Scholar]
  15. Hagensee M. E., Yaegashi N., Galloway D. A. 1993; Selfassembly of human papillomavirus type 1 capsids by expression of the LI and L2 capsid proteins. Journal of Virology 67:315–332
    [Google Scholar]
  16. Iwasaki T., Sata T., Sugase M., Sato Y., Kurata T., Suzuki K., Ohmoto H., Iwamoto S., Matsukura T. 1992; Detection of capsid antigen of human papillomavirus (HPV) in benign lesions of female genital tract using anti-HPV monoclonal antibody. Journal of Pathology 168:293–300
    [Google Scholar]
  17. Kirnbauer R., Taub J., Greenstone H., Roden R., Dürst M., Gissmann L., Lowy D. R., Schiller J. T. 1993; Efficient selfassembly of human papillomavirus type 16 L1 and L1–L2 into viruslike particles. Journal of Virology 67:6929–6936
    [Google Scholar]
  18. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  19. Lim P. S., Jenson A. B., Cowsert L., Nakai Y., Lim L. Y., Jin X. W., Sundberg P. 1990; Distribution and specific identification of papillomavirus major capsid protein epitopes by immuno- chemistry and epitope scanning of synthetic peptides. Journal of Infectious Diseases 162:1263–1269
    [Google Scholar]
  20. Mclean C. S., Churcher M. J., Meinke J., Smith G. L., Higgins G., Stanley M., Minson A. C. 1990; Production and characterization of a monoclonal antibody to human papillomavirus type 16 using recombinant vaccinia virus. Journal of Clinical Pathology 43:488–492
    [Google Scholar]
  21. Manos M. M., Wright D. K., Lewis A. J., Broker T. R., Wolinsky S. M. 1989; The use of polymerase chain reaction amplification for the detection of genital human papillomaviruses. In Molecular Diagnostics of Human Cancer, Cancer Cells 7 pp 209–214 Furth M., Greaves M. Edited by New York: Cold Spring Harbor Press;
    [Google Scholar]
  22. Nilsson B., Abrahmsen L., Uhlen M. 1985; Immobilization and purification of enzymes with staphylococcal protein A gene fusion vectors. EMBO Journal 4:1075–1080
    [Google Scholar]
  23. Orth G., Breitburd F., Favre M. 1978; Evidence for antigenic determinants shared by the structural polypeptides of (Shope) rabbit papillomavirus and human papillomavirus type 1. Virology 91:243–255
    [Google Scholar]
  24. Rose R. C., Bonnez W., Reichman R. C., García R. L. 1993; Expression of human papillomavirus type 11 L1 protein in insect cells: In vivo and in vitro assembly of viruslike particles. Journal of Virology 67:1936–1944
    [Google Scholar]
  25. Seedorf K., Krammer G., Dürst M., Suhai S., Röwekamp W. G. 1985; Human papillomavirus type 16 DNA sequence. Virology 145:181–185
    [Google Scholar]
  26. Shepherd P., Lunny D., Brookes R., Palmer T., Mccance D. 1992; The detection of human papillomaviruses in cervical biopsies by immunohistochemistry and in situ hybridization. Scandinavian Journal of Immunology 36: Supplement 11 69–74
    [Google Scholar]
  27. Smith D. B., Johnson K. S. 1988; Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40
    [Google Scholar]
  28. Snijders P. J., Van Den Brule A. J. C., Schrijnemakers H. F. J., Snow G., Meijer C. J. L. M., Walboomers J. M. M. 1990; The use of general primers in the polymerase chain reaction permits the detection of a broad spectrum of human papillomavirus genotypes. Journal of General Virology 71:173–181
    [Google Scholar]
  29. Syrjänen S. M. 1990; Basic concepts and practical applications of recombinant DNA techniques in detection of human papillomavirus (HPV) infection. Acta pathologica, microbiologica et immunologica Scandinavica 98:95–110
    [Google Scholar]
  30. Van Den Brule A. J., Meijer C. J., Bakels V., Kenemans P., Walboomers J. M. 1990; Rapid detection of human papillomavirus in cervical scrapes by combined general primer-mediated and type-specific polymerase chain reaction. Journal of Clinical Microbiology 28:2739–2743
    [Google Scholar]
  31. Volpers C., Streeck R. E. 1991; Genome organization and nucleotide sequence of human papillomavirus type 39. Virology 181:419–423
    [Google Scholar]
  32. Volpers C., Sapp M., Komly C. A., Richalet-Secordel P., Streeck R. E. 1993; Development of type-specific and crossreactive serological probes for the minor capsid protein of human papillomavirus type 33. Journal of Virology 67:1927–1935
    [Google Scholar]
  33. Volpers C., Schirmacher P., Streeck R. E., Sapp M. 1994; Assembly of the major and the minor capsid protein of human papillomavirus type 33 into virus-like particles and tubular structures in insect cells. Virology 200:504–512
    [Google Scholar]
  34. Walboomers J. M., Melchers W. J., Mullink H., Meijer C. J., Struyk A., Quint W. G., Van Der Noordaa J., Ter Schegget J. 1988; Sensitivity of in situ detection with biotinylated probes of human papillomavirus type 16 DNA in frozen tissue sections of squamos cell carcinomas of the cervix. American Journal of Pathology 131:587–594
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-12-3375
Loading
/content/journal/jgv/10.1099/0022-1317-75-12-3375
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error