1887

Abstract

Microflex LT (Bruker Daltonics) and VITEK MS (bioMérieux) are bacterial identification systems that are based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). For VITEK MS, two identification softwares, VITEK MS IVD (IVD) and SARAMIS (SARAMIS), are available. Microflex LT is equipped with MALDI Biotyper RTC software (Biotyper). Although the identification accuracy of each instrument has been compared for various bacteria, no detailed examination has been conducted for the identification accuracy of . In this report, we compared the three identification softwares for identification reproducibility in three ATCC strains and identification accuracy in 50 clinical isolates. The results showed 100, 91.7 and 100 % identification reproducibility accuracy of ATCC strains when examined by IVD, SARAMIS and Biotyper software, respectively. For the identification of the clinical isolates, all three softwares exhibited satisfactory identification accuracy of Among the 50 clinical isolates, seven showed identical toxin genotype corresponding to the exact ribotype. However, MALDI-TOF MS failed to identify them as the identical type. Based on the above results, we concluded that both types of MALDI-TOF MS reproducibly identified ; however, they are currently not suitable for typing of clones.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000136
2015-10-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/10/1144.html?itemId=/content/journal/jmm/10.1099/jmm.0.000136&mimeType=html&fmt=ahah

References

  1. Barbuddhe S. B., Maier T., Schwarz G., Kostrzewa M., Hof H., Domann E., Chakraborty T., Hain T. 2008; Rapid identification and typing of Listeria species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 74:5402–5407 [View Article][PubMed]
    [Google Scholar]
  2. Chean R., Kotsanas D., Francis M. J., Palombo E. A., Jadhav S. R., Awad M. M., Lyras D., Korman T. M., Jenkin G. A. 2014; Comparing the identification of Clostridium spp. by two matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry platforms to 16S rRNA PCR sequencing as a reference standard: a detailed analysis of age of culture and sample preparation. Anaerobe 30:85–89 [View Article][PubMed]
    [Google Scholar]
  3. Collins D. A., Hawkey P. M., Riley T. V. 2013; Epidemiology of Clostridium difficile infection in Asia. Antimicrob Resist Infect Control 2:21 http://www.aricjournal.com/content/2/1/21 [View Article][PubMed]
    [Google Scholar]
  4. Coltella L., Mancinelli L., Onori M., Lucignano B., Menichella D., Sorge R., Raponi M., Mancini R., Russo C. 2013; Advancement in the routine identification of anaerobic bacteria by MALDI-TOF mass spectrometry. Eur J Clin Microbiol Infect Dis 32:1183–1192 [View Article][PubMed]
    [Google Scholar]
  5. Demirev P. A., Ho Y.-P., Ryzhov V., Fenselau C. 1999; Microorganism identification by mass spectrometry and protein database searches. Anal Chem 71:2732–2738 [View Article][PubMed]
    [Google Scholar]
  6. Deng J., Fu L., Wang R., Yu N., Ding X., Jiang L., Fang Y., Jiang C., Lin L., other authors. 2014; Comparison of MALDI-TOF MS, gene sequencing and the Vitek 2 for identification of seventy-three clinical isolates of enteropathogens. J Thorac Dis 6:539–544[PubMed]
    [Google Scholar]
  7. Grosse-Herrenthey A., Maier T., Gessler F., Schaumann R., Böhnel H., Kostrzewa M., Krüger M. 2008; Challenging the problem of clostridial identification with matrix-assisted laser desorption and ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Anaerobe 14:242–249 [View Article][PubMed]
    [Google Scholar]
  8. Huber C. A., Foster N. F., Riley T. V., Paterson D. L. 2013; Challenges for standardization of Clostridium difficile typing methods. J Clin Microbiol 51:2810–2814 [View Article][PubMed]
    [Google Scholar]
  9. Kato H., Kato N., Watanabe K., Iwai N., Nakamura H., Yamamoto T., Suzuki K., Kim S.-M., Chong Y., Wasito E. B. 1998; Identification of toxin A-negative, toxin B-positive Clostridium difficile by PCR. J Clin Microbiol 36:2178–2182[PubMed]
    [Google Scholar]
  10. Labbé A.-C., Poirier L., Maccannell D., Louie T., Savoie M., Béliveau C., Laverdière M., Pépin J. 2008; Clostridium difficile infections in a Canadian tertiary care hospital before and during a regional epidemic associated with the BI/NAP1/027 strain. Antimicrob Agents Chemother 52:3180–3187 [View Article][PubMed]
    [Google Scholar]
  11. Marko D. C., Saffert R. T., Cunningham S. A., Hyman J., Walsh J., Arbefeville S., Howard W., Pruessner J., Safwat N., other authors. 2012; Evaluation of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of nonfermenting Gram-negative bacilli isolated from cultures from cystic fibrosis patients. J Clin Microbiol 50:2034–2039 [View Article][PubMed]
    [Google Scholar]
  12. Martiny D., Busson L., Wybo I., El Haj R. A., Dediste A., Vandenberg O. 2012; Comparison of the Microflex LT and Vitek MS systems for routine identification of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50:1313–1325 [View Article][PubMed]
    [Google Scholar]
  13. McFarland L. V. 2008; Update on the changing epidemiology of Clostridium difficile-associated disease. Nat Clin Pract Gastroenterol Hepatol 5:40–48 [View Article][PubMed]
    [Google Scholar]
  14. Reil M., Erhard M., Kuijper E. J., Kist M., Zaiss H., Witte W., Gruber H., Borgmann S. 2011; Recognition of Clostridium difficile PCR-ribotypes 001, 027 and 126/078 using an extended MALDI-TOF MS system. Eur J Clin Microbiol Infect Dis 30:1431–1436 [View Article][PubMed]
    [Google Scholar]
  15. Rettinger A., Krupka I., Grünwald K., Dyachenko V., Fingerle V., Konrad R., Raschel H., Busch U., Sing A., other authors. 2012; Leptospira spp. strain identification by MALDI TOF MS is an equivalent tool to 16S rRNA gene sequencing and multi locus sequence typing (MLST). BMC Microbiol 12:185 [View Article][PubMed]
    [Google Scholar]
  16. Seng P., Drancourt M., Gouriet F., La Scola B., Fournier P.-E., Rolain J. M., Raoult D. 2009; Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551 [View Article][PubMed]
    [Google Scholar]
  17. Siegrist T. J., Anderson P. D., Huen W. H., Kleinheinz G. T., McDermott C. M., Sandrin T. R. 2007; Discrimination and characterization of environmental strains of Escherichia coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). J Microbiol Methods 68:554–562 [View Article][PubMed]
    [Google Scholar]
  18. Stubbs S. L. J., Brazier J. S., O'Neill G. L., Duerden B. I. 1999; PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol 37:461–463[PubMed]
    [Google Scholar]
  19. Valentine N., Wunschel S., Wunschel D., Petersen C., Wahl K. 2005; Effect of culture conditions on microorganism identification by matrix-assisted laser desorption ionization mass spectrometry. Appl Environ Microbiol 71:58–64 [View Article][PubMed]
    [Google Scholar]
  20. van Veen S. Q., Claas E. C. J., Kuijper E. J. 2010; High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48:900–907 [View Article][PubMed]
    [Google Scholar]
  21. Veloo A. C. M., Knoester M., Degener J. E., Kuijper E. J. 2011; Comparison of two matrix-assisted laser desorption ionisation-time of flight mass spectrometry methods for the identification of clinically relevant anaerobic bacteria. Clin Microbiol Infect 17:1501–1506 [View Article][PubMed]
    [Google Scholar]
  22. Williamson Y. M., Moura H., Woolfitt A. R., Pirkle J. L., Barr J. R., Carvalho M. G., Ades E. P., Carlone G. M., Sampson J. S. 2008; Differentiation of Streptococcus pneumoniae conjunctivitis outbreak isolates by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 74:5891–5897 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000136
Loading
/content/journal/jmm/10.1099/jmm.0.000136
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error