1887

Abstract

A timely coordination of cellular DNA synthesis and division cycles is governed by the temporal and spatial activation of cyclin-dependent kinases (Cdks). The primary regulation of Cdk activation is through binding to partner cyclin proteins. Several gammaherpesviruses encode a viral homologue of cellular cyclin D, which may function to deregulate host cell cycle progression. One of these is encoded by Kaposi's sarcoma-associated herpesvirus (KSHV) and is called K cyclin or viral cyclin (v-cyclin). v-Cyclin is expressed in most of the malignant cells that are associated with KSHV infection in humans, labelling v-cyclin as a putative viral oncogene. Here are described some of the major structural and functional properties of mammalian cyclin/Cdk complexes, some of which are phenocopied by v-cyclin. In addition, the molecular events leading to orderly progression through the G/S and G/M cell cycle phases are reviewed. This molecular picture serves as a platform on which to explain v-cyclin-specific functional properties. Interesting but largely speculative issues concern the interplay between v-cyclin-mediated cell cycle deregulation and molecular progression of KSHV-associated neoplasms.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.79812-0
2004-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/6/vir851347.html?itemId=/content/journal/jgv/10.1099/vir.0.79812-0&mimeType=html&fmt=ahah

References

  1. Alt J. R., Gladden A. B., Diehl J. A. 2002; p21Cip1 promotes cyclin D1 nuclear accumulation via direct inhibition of nuclear export. J Biol Chem 277:8517–8523 [CrossRef]
    [Google Scholar]
  2. Bagui T. K., Jackson R. J., Agrawal D., Pledger W. J. 2000; Analysis of cyclin D3–cdk4 complexes in fibroblasts expressing and lacking p27kip1 and p21cip1 . Mol Cell Biol 20:8748–8757 [CrossRef]
    [Google Scholar]
  3. Baldin V., Lukas J., Marcote M. J., Pagano M., Draetta G. 1993; Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 7:812–821 [CrossRef]
    [Google Scholar]
  4. Bell S. P., Dutta A. 2002; DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374 [CrossRef]
    [Google Scholar]
  5. Berthet C., Aleem E., Coppola V., Tessarollo L., Kaldis P. 2003; Cdk2 knockout mice are viable. Curr Biol 13:1775–1785 [CrossRef]
    [Google Scholar]
  6. Bischoff J. R., Plowman G. D. 1999; The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol 9:454–459 [CrossRef]
    [Google Scholar]
  7. Boshoff C., Weiss R. A. 2001; Epidemiology and pathogenesis of Kaposi's sarcoma-associated herpesvirus. Philos Trans R Soc Lond Ser B Biol Sci 356:517–534 [CrossRef]
    [Google Scholar]
  8. Brown N. R., Noble M. E., Endicott J. A., Garman E. F., Wakatsuki S., Mitchell E., Rasmussen B., Hunt T., Johnson L. N. 1995; The crystal structure of cyclin A. Structure 3:1235–1247 [CrossRef]
    [Google Scholar]
  9. Brown N. R., Noble M. E., Endicott J. A., Johnson L. N. 1999; The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat Cell Biol 1:438–443 [CrossRef]
    [Google Scholar]
  10. Carbone A., Cilia A. M., Gloghini A., Capello D., Todesco M., Quattrone S., Volpe R., Gaidano G. 1998; Establishment and characterization of EBV-positive and EBV-negative primary effusion lymphoma cell lines harbouring human herpesvirus type-8. Br J Haematol 102:1081–1089 [CrossRef]
    [Google Scholar]
  11. Card G. L., Knowles P., Laman H., Jones N., McDonald N. Q. 2000; Crystal structure of a gamma-herpesvirus cyclin–cdk complex. EMBO J 19:2877–2888 [CrossRef]
    [Google Scholar]
  12. Cesarman E., Chang Y., Moore P. S., Said J. W., Knowles D. M. 1995; Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 332:1186–1191 [CrossRef]
    [Google Scholar]
  13. Chang Y., Cesarman E., Pessin M. S., Lee F., Culpepper J., Knowles D. M., Moore P. S. 1994; Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266:1865–1869 [CrossRef]
    [Google Scholar]
  14. Chang Y., Moore P. S., Talbot S. J., Boshoff C. H., Zarkowska T., Godden K., Paterson H., Weiss R. A., Mittnacht S. 1996; Cyclin encoded by KS herpesvirus. Nature 382:410 [CrossRef]
    [Google Scholar]
  15. Chen J., Saha P., Kornbluth S., Dynlacht B. D., Dutta A. 1996; Cyclin-binding motifs are essential for the function of p21CIP1. Mol Cell Biol 16:4673–4682
    [Google Scholar]
  16. Cheng M., Olivier P., Diehl J. A., Fero M., Roussel M. F., Roberts J. M., Sherr C. J. 1999; The p21Cip1 and p27Kip1 CDK ‘inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 18:1571–1583 [CrossRef]
    [Google Scholar]
  17. Child E. S., Mann D. J. 2001; Novel properties of the cyclin encoded by Human Herpesvirus 8 that facilitate exit from quiescence. Oncogene 20:3311–3322 [CrossRef]
    [Google Scholar]
  18. Ciemerych M. A., Kenney A. M., Sicinska E., Kalaszczynska I., Bronson R. T., Rowitch D. H., Gardner H., Sicinski P. 2002; Development of mice expressing a single D-type cyclin. Genes Dev 16:3277–3289 [CrossRef]
    [Google Scholar]
  19. Clurman B. E., Sheaff R. J., Thress K., Groudine M., Roberts J. M. 1996; Turnover of cyclin E by the ubiquitin–proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation. Genes Dev 10:1979–1990 [CrossRef]
    [Google Scholar]
  20. Clute P., Pines J. 1999; Temporal and spatial control of cyclin B1 destruction in metaphase. Nat Cell Biol 1:82–87 [CrossRef]
    [Google Scholar]
  21. De Bondt H. L., Rosenblatt J., Jancarik J., Jones H. D., Morgan D. O., Kim S. H. 1993; Crystal structure of cyclin-dependent kinase 2. Nature 363:595–602 [CrossRef]
    [Google Scholar]
  22. den Elzen N., Pines J. 2001; Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. J Cell Biol 153:121–136 [CrossRef]
    [Google Scholar]
  23. Diehl J. A., Zindy F., Sherr C. J. 1997; Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin–proteasome pathway. Genes Dev 11:957–972 [CrossRef]
    [Google Scholar]
  24. Diehl J. A., Cheng M., Roussel M. F., Sherr C. J. 1998; Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12:3499–3511 [CrossRef]
    [Google Scholar]
  25. Djerbi M., Screpanti V., Catrina A. I., Bogen B., Biberfeld P., Grandien A. 1999; The inhibitor of death receptor signaling, FLICE-inhibitory protein, defines a new class of tumor progression factors. J Exp Med 190:1025–1032 [CrossRef]
    [Google Scholar]
  26. Doxsey S. J. 2001; Centrosomes as command centres for cellular control. Nat Cell Biol 3:E105–108 [CrossRef]
    [Google Scholar]
  27. Dunaief J. L., Strober B. E., Guha S., Khavari P. A., Alin K., Luban J., Begemann M., Crabtree G. R., Goff S. P. 1994; The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79:119–130 [CrossRef]
    [Google Scholar]
  28. Dupin N., Fisher C., Kellam P. 10 other authors 1999; Distribution of human herpesvirus-8 latently infected cells in Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. Proc Natl Acad Sci U S A 96:4546–4551 [CrossRef]
    [Google Scholar]
  29. el-Deiry W. S., Tokino T., Velculescu V. E. 7 other authors 1993; WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825 [CrossRef]
    [Google Scholar]
  30. Ellis M., Chew Y. P., Fallis L., Freddersdorf S., Boshoff C., Weiss R. A., Lu X., Mittnacht S. 1999; Degradation of p27Kip cdk inhibitor triggered by Kaposi's sarcoma virus cyclin–cdk6 complex. EMBO J 18:644–653 [CrossRef]
    [Google Scholar]
  31. Endicott J. A., Noble M. E., Tucker J. A. 1999; Cyclin-dependent kinases: inhibition and substrate recognition. Curr Opin Struct Biol 9:738–744 [CrossRef]
    [Google Scholar]
  32. Ensoli B., Sturzl M. 1998; Kaposi's sarcoma: a result of the interplay among inflammatory cytokines, angiogenic factors and viral agents. Cytokine Growth Factor Rev 9:63–83 [CrossRef]
    [Google Scholar]
  33. Fotedar R., Fitzgerald P., Rousselle T., Cannella D., Doree M., Msieser H., Fotedar A. 1996; p21 contains independent binding sites for cyclin and cdk2: both sites are required to inhibit cdk2 kinase activity. Oncogene 12:2155–2164
    [Google Scholar]
  34. Friborg J. Jr, Kong W., Hottiger M. O., Nabel G. J. 1999; p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402:889–894
    [Google Scholar]
  35. Fujimuro M., Wu F. Y., ApRhys C., Kajumbula H., Young D. B., Hayward G. S., Hayward S. D. 2003; A novel viral mechanism for dysregulation of beta-catenin in Kaposi's sarcoma-associated herpesvirus latency. Nat Med 9:300–306 [CrossRef]
    [Google Scholar]
  36. Geley S., Kramer E., Gieffers C., Gannon J., Peters J. M., Hunt T. 2001; Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J Cell Biol 153:137–148 [CrossRef]
    [Google Scholar]
  37. Geng Y., Yu Q., Whoriskey W. 10 other authors 2001; Expression of cyclins E1 and E2 during mouse development and in neoplasia. Proc Natl Acad Sci U S A 98:13138–13143 [CrossRef]
    [Google Scholar]
  38. Geng Y., Yu Q., Sicinska E. 7 other authors 2003; Cyclin E ablation in the mouse. Cell 114:431–443 [CrossRef]
    [Google Scholar]
  39. Gill P. S., Tsai Y. C., Rao A. P., Spruck C. H. III, Zheng T., Harrington W. A. Jr, Cheung T., Nathwani B., Jones P. A. 1998; Evidence for multiclonality in multicentric Kaposi's sarcoma. Proc Natl Acad Sci U S A 95:8257–8261 [CrossRef]
    [Google Scholar]
  40. Godden-Kent D., Talbot S. J., Boshoff C., Chang Y., Moore P., Weiss R. A., Mittnacht S. 1997; The cyclin encoded by Kaposi's sarcoma-associated herpesvirus stimulates cdk6 to phosphorylate the retinoblastoma protein and histone H1. J Virol 71:4193–4198
    [Google Scholar]
  41. Gu Y., Turck C. W., Morgan D. O. 1993; Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit. Nature 366:707–710 [CrossRef]
    [Google Scholar]
  42. Hagting A., Jackman M., Simpson K., Pines J. 1999; Translocation of cyclin B1 to the nucleus at prophase requires a phosphorylation-dependent nuclear import signal. Curr Biol 9:680–689 [CrossRef]
    [Google Scholar]
  43. Harbour J. W., Dean D. C. 2000; The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14:2393–2409 [CrossRef]
    [Google Scholar]
  44. Harbour J. W., Luo R. X., Dei Santi A., Postigo A. A., Dean D. C. 1999; Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98:859–869 [CrossRef]
    [Google Scholar]
  45. Harper J. W., Elledge S. J., Keyomarsi K. 9 other authors 1995; Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell 6:387–400 [CrossRef]
    [Google Scholar]
  46. Harper J. W., Burton J. L., Solomon M. J. 2002; The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev 16:2179–2206 [CrossRef]
    [Google Scholar]
  47. Helin K., Harlow E., Fattaey A. 1993; Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol Cell Biol 13:6501–6508
    [Google Scholar]
  48. Hinchcliffe E. H., Sluder G. 2001; ‘It takes two to tango’: understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev 15:1167–1181 [CrossRef]
    [Google Scholar]
  49. Hitomi M., Stacey D. W. 1999; Cyclin D1 production in cycling cells depends on ras in a cell-cycle-specific manner. Curr Biol 9:1075–1084 [CrossRef]
    [Google Scholar]
  50. Hoge A. T., Hendrickson S. B., Burns W. H. 2000; Murine gammaherpesvirus 68 cyclin D homologue is required for efficient reactivation from latency. J Virol 74:7016–7023 [CrossRef]
    [Google Scholar]
  51. Ishida S., Huang E., Zuzan H., Spang R., Leone G., West M., Nevins J. R. 2001; Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol Cell Biol 21:4684–4699 [CrossRef]
    [Google Scholar]
  52. Jackman M., Firth M., Pines J. 1995; Human cyclins B1 and B2 are localized to strikingly different structures: B1 to microtubules, B2 primarily to the Golgi apparatus. EMBO J 14:1646–1654
    [Google Scholar]
  53. Jackman M., Kubota Y., den Elzen N., Hagting A., Pines J. 2002; Cyclin A– and cyclin E–Cdk complexes shuttle between the nucleus and the cytoplasm. Mol Biol Cell 13:1030–1045 [CrossRef]
    [Google Scholar]
  54. Jeffrey P. D., Russo A. A., Polyak K., Gibbs E., Hurwitz J., Massague J., Pavletich N. P. 1995; Mechanism of CDK activation revealed by the structure of a cyclinA–CDK2 complex. Nature 376:313–320 [CrossRef]
    [Google Scholar]
  55. Jeffrey P. D., Tong L., Pavletich N. P. 2000; Structural basis of inhibition of CDK–cyclin complexes by INK4 inhibitors. Genes Dev 14:3115–3125 [CrossRef]
    [Google Scholar]
  56. Jenner R. G., Alba M. M., Boshoff C., Kellam P. 2001; Kaposi's sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J Virol 75:891–902 [CrossRef]
    [Google Scholar]
  57. Judde J. G., Lacoste V., Briere J. 7 other authors 2000; Monoclonality or oligoclonality of human herpesvirus 8 terminal repeat sequences in Kaposi's sarcoma and other diseases. J Natl Cancer Inst 92:729–736 [CrossRef]
    [Google Scholar]
  58. Kaldis P., Ojala P. M., Tong L., Makela T. P., Solomon M. J. 2001; CAK-independent activation of CDK6 by a viral cyclin. Mol Biol Cell 12:3987–3999 [CrossRef]
    [Google Scholar]
  59. Katano H., Sato Y., Sata T. 2001; Expression of p53 and human herpesvirus-8 (HHV-8)-encoded latency-associated nuclear antigen with inhibition of apoptosis in HHV-8-associated malignancies. Cancer 92:3076–3084 [CrossRef]
    [Google Scholar]
  60. Kennedy M. M., O'Leary J. J., Oates J. L., Lucas S. B., Howells D. D., Picton S., McGee J. O. 1998; Human herpes virus 8 (HHV-8) in Kaposi's sarcoma: lack of association with Bcl-2 and p53 protein expression. Mol Pathol 51:155–159 [CrossRef]
    [Google Scholar]
  61. Kim K. K., Chamberlin H. M., Morgan D. O., Kim S. H. 1996; Three-dimensional structure of human cyclin H, a positive regulator of the CDK-activating kinase. Nat Struct Biol 3:849–855 [CrossRef]
    [Google Scholar]
  62. Knudsen E. S., Wang J. Y. 1997; Dual mechanisms for the inhibition of E2F binding to RB by cyclin-dependent kinase-mediated RB phosphorylation. Mol Cell Biol 17:5771–5783
    [Google Scholar]
  63. Kobayashi H., Stewart E., Poon R., Adamczewski J. P., Gannon J., Hunt T. 1992; Identification of the domains in cyclin A required for binding to, and activation of, p34cdc2 and p32cdk2 protein kinase subunits. Mol Biol Cell 3:1279–1294 [CrossRef]
    [Google Scholar]
  64. Kouzarides T. 1999; Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev 9:40–48 [CrossRef]
    [Google Scholar]
  65. Krek W., Ewen M. E., Shirodkar S., Arany Z., Kaelin W. G. Jr, Livingston D. M. 1994; Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin A-dependent protein kinase. Cell 78:161–172 [CrossRef]
    [Google Scholar]
  66. Kumagai A., Dunphy W. G. 1996; Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts. Science 273:1377–1380 [CrossRef]
    [Google Scholar]
  67. LaBaer J., Garrett M. D., Stevenson L. F., Slingerland J. M., Sandhu C., Chou H. S., Fattaey A., Harlow E. 1997; New functional activities for the p21 family of CDK inhibitors. Genes Dev 11:847–862 [CrossRef]
    [Google Scholar]
  68. Lacoste V., Mauclere P., Dubreuil G., Lewis J., Georges-Courbot M. C., Gessain A. 2000; KSHV-like herpesviruses in chimps and gorillas. Nature 407:151–152 [CrossRef]
    [Google Scholar]
  69. Laman H., Coverley D., Krude T., Laskey R., Jones N. 2001; Viral cyclin–cyclin-dependent kinase 6 complexes initiate nuclear DNA replication. Mol Cell Biol 21:624–635 [CrossRef]
    [Google Scholar]
  70. Lees E. M., Harlow E. 1993; Sequences within the conserved cyclin box of human cyclin A are sufficient for binding to and activation of cdc2 kinase. Mol Cell Biol 13:1194–1201
    [Google Scholar]
  71. Lew D. J., Kornbluth S. 1996; Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control. Curr Opin Cell Biol 8:795–804 [CrossRef]
    [Google Scholar]
  72. Li M., Lee H., Yoon D. W., Albrecht J. C., Fleckenstein B., Neipel F., Jung J. U. 1997; Kaposi's sarcoma-associated herpesvirus encodes a functional cyclin. J Virol 71:1984–1991
    [Google Scholar]
  73. Lin J., Reichner C., Wu X., Levine A. J. 1996; Analysis of wild-type and mutant p21WAF-1 gene activities. Mol Cell Biol 16:1786–1793
    [Google Scholar]
  74. Lukas J., Herzinger T., Hansen K., Moroni M. C., Resnitzky D., Helin K., Reed S. I., Bartek J. 1997; Cyclin E-induced S phase without activation of the pRb/E2F pathway. Genes Dev 11:1479–1492 [CrossRef]
    [Google Scholar]
  75. Lukas C., Sorensen C. S., Kramer E., Santoni-Rugiu E., Lindeneg C., Peters J. M., Bartek J., Lukas J. 1999; Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex. Nature 401:815–818 [CrossRef]
    [Google Scholar]
  76. Lundberg A. S., Weinberg R. A. 1998; Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin–cdk complexes. Mol Cell Biol 18:753–761
    [Google Scholar]
  77. Mann D. J., Child E. S., Swanton C., Laman H., Jones N. 1999; Modulation of p27Kip1 levels by the cyclin encoded by Kaposi's sarcoma-associated herpesvirus. EMBO J 18:654–663 [CrossRef]
    [Google Scholar]
  78. Marti A., Wirbelauer C., Scheffner M., Krek W. 1999; Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nat Cell Biol 1:14–19 [CrossRef]
    [Google Scholar]
  79. Matsushime H., Roussel M. F., Ashmun R. A., Sherr C. J. 1991; Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell 65:701–713 [CrossRef]
    [Google Scholar]
  80. Meraldi P., Honda R., Nigg E. A. 2002; Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53(−/−) cells. EMBO J 21:483–492 [CrossRef]
    [Google Scholar]
  81. Meyerson M., Harlow E. 1994; Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Mol Cell Biol 14:2077–2086
    [Google Scholar]
  82. Montaner S., Sodhi A., Pece S., Mesri E. A., Gutkind J. S. 2001; The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor promotes endothelial cell survival through the activation of Akt/protein kinase B. Cancer Res 61:2641–2648
    [Google Scholar]
  83. Moore P. S., Chang Y. 1998; Antiviral activity of tumor-suppressor pathways: clues from molecular piracy by KSHV. Trends Genet 14:144–150 [CrossRef]
    [Google Scholar]
  84. Moore P. S., Gao S. J., Dominguez G. 7 other authors 1996; Primary characterization of a herpesvirus agent associated with Kaposi's sarcomae. J Virol 70:549–558
    [Google Scholar]
  85. Moore J. D., Yang J., Truant R., Kornbluth S. 1999; Nuclear import of Cdk/cyclin complexes: identification of distinct mechanisms for import of Cdk2/cyclin E and Cdc2/cyclin B1. J Cell Biol 144:213–224 [CrossRef]
    [Google Scholar]
  86. Morgan D. O. 1997; Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291 [CrossRef]
    [Google Scholar]
  87. Morgan D. O. 1999; Regulation of the APC and the exit from mitosis. Nat Cell Biol 1:E47–53 [CrossRef]
    [Google Scholar]
  88. Muller H., Bracken A. P., Vernell R. 7 other authors 2001; E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev 15:267–285 [CrossRef]
    [Google Scholar]
  89. Mundt K. E., Golsteyn R. M., Lane H. A., Nigg E. A. 1997; On the regulation and function of human polo-like kinase 1 (PLK1): effects of overexpression on cell cycle progression. Biochem Biophys Res Commun 239:377–385 [CrossRef]
    [Google Scholar]
  90. Nasmyth K. 2002; Segregating sister genomes: the molecular biology of chromosome separation. Science 297:559–565 [CrossRef]
    [Google Scholar]
  91. Nigg E. A. 1993; Targets of cyclin-dependent protein kinases. Curr Opin Cell Biol 5:187–193 [CrossRef]
    [Google Scholar]
  92. Nigg E. A. 1996; Cyclin-dependent kinase 7: at the cross-roads of transcription, DNA repair and cell cycle control?. Curr Opin Cell Biol 8:312–317 [CrossRef]
    [Google Scholar]
  93. Noda A., Ning Y., Venable S. F., Pereira-Smith O. M., Smith J. R. 1994; Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211:90–98 [CrossRef]
    [Google Scholar]
  94. Ohtsubo M., Theodoras A. M., Schumacher J., Roberts J. M., Pagano M. 1995; Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol Cell Biol 15:2612–2624
    [Google Scholar]
  95. Ojala P. M., Tiainen M., Salven P., Veikkola T., Castanos-Velez E., Sarid R., Biberfeld P., Makela T. P. 1999; Kaposi's sarcoma-associated herpesvirus-encoded v-cyclin triggers apoptosis in cells with high levels of cyclin-dependent kinase 6. Cancer Res 59:4984–4989
    [Google Scholar]
  96. Ojala P. M., Yamamoto K., Castanos-Velez E., Biberfeld P., Korsmeyer S. J., Makela T. P. 2000; The apoptotic v-cyclin-CDK6 complex phosphorylates and inactivates Bcl-2. Nat Cell Biol 2:819–825 [CrossRef]
    [Google Scholar]
  97. Ortega S., Prieto I., Odajima J., Martin A., Dubus P., Sotillo R., Barbero J. L., Malumbres M., Barbacid M. 2003; Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 35:25–31 [CrossRef]
    [Google Scholar]
  98. Parry D. H., O'Farrell P. H. 2001; The schedule of destruction of three mitotic cyclins can dictate the timing of events during exit from mitosis. Curr Biol 11:671–683 [CrossRef]
    [Google Scholar]
  99. Paulose-Murphy M., Ha N. K., Xiang C. 7 other authors 2001; Transcription program of human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus). J Virol 75:4843–4853 [CrossRef]
    [Google Scholar]
  100. Pines J., Hunter T. 1991; Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J Cell Biol 115:1–17 [CrossRef]
    [Google Scholar]
  101. Poon R. Y., Hunter T. 1995; Dephosphorylation of Cdk2 Thr160 by the cyclin-dependent kinase-interacting phosphatase KAP in the absence of cyclin. Science 270:90–93 [CrossRef]
    [Google Scholar]
  102. Qian Y. W., Erikson E., Taieb F. E., Maller J. L. 2001; The polo-like kinase Plx1 is required for activation of the phosphatase Cdc25C and cyclin B-Cdc2 in Xenopus oocytes. Mol Biol Cell 12:1791–1799 [CrossRef]
    [Google Scholar]
  103. Radkov S. A., Kellam P., Boshoff C. 2000; The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma–E2F pathway and with the oncogene Hras transforms primary rat cells. Nat Med 6:1121–1127 [CrossRef]
    [Google Scholar]
  104. Ren B., Cam H., Takahashi Y., Volkert T., Terragni J., Young R. A., Dynlacht B. D. 2002; E2F integrates cell cycle progression with DNA repair, replication, and G2/M checkpoints. Genes Dev 16:245–256 [CrossRef]
    [Google Scholar]
  105. Rivas C., Thlick A. E., Parravicini C., Moore P. S., Chang Y. 2001; Kaposi's sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53. J Virol 75:429–438 [CrossRef]
    [Google Scholar]
  106. Russo A. A., Jeffrey P. D., Patten A. K., Massague J., Pavletich N. P. 1996a; Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A–Cdk2 complex. Nature 382:325–331 [CrossRef]
    [Google Scholar]
  107. Russo A. A., Jeffrey P. D., Pavletich N. P. 1996b; Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat Struct Biol 3:696–700 [CrossRef]
    [Google Scholar]
  108. Russo J. J., Bohenzky R. A., Chien M. C. 8 other authors & ; 1996c; . Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci U S A 93:14862–14867 [CrossRef]
    [Google Scholar]
  109. Russo A. A., Tong L., Lee J. O., Jeffrey P. D., Pavletich N. P. 1998; Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature 395:237–243 [CrossRef]
    [Google Scholar]
  110. Sarcevic B., Lilischkis R., Sutherland R. L. 1997; Differential phosphorylation of T-47D human breast cancer cell substrates by D1-, D3-, E-, and A-type cyclin–CDK complexes. J Biol Chem 272:33327–33337 [CrossRef]
    [Google Scholar]
  111. Sarid R., Olsen S. J., Moore P. S. 1999; Kaposi's sarcoma-associated herpesvirus: epidemiology, virology, and molecular biology. Adv Virus Res 52:139–232
    [Google Scholar]
  112. Schulman B. A., Lindstrom D. L., Harlow E. 1998; Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A. Proc Natl Acad Sci U S A 95:10453–10458 [CrossRef]
    [Google Scholar]
  113. Schulze-Gahmen U., Kim S. H. 2002; Structural basis for CDK6 activation by a virus-encoded cyclin. Nat Struct Biol 9:177–181
    [Google Scholar]
  114. Schulze-Gahmen U., Jung J. U., Kim S. H. 1999; Crystal structure of a viral cyclin, a positive regulator of cyclin-dependent kinase 6. Structure Fold Des 7:245–254 [CrossRef]
    [Google Scholar]
  115. Sherr C. J. 1993; Mammalian G1 cyclins. Cell 73:1059–1065
    [Google Scholar]
  116. Sherr C. J. 1996; Cancer cell cycles. Science 274:1672–1677 [CrossRef]
    [Google Scholar]
  117. Sherr C. J., Roberts J. M. 1999; CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512 [CrossRef]
    [Google Scholar]
  118. Sigrist S., Jacobs H., Stratmann R., Lehner C. F. 1995; Exit from mitosis is regulated by Drosophila fizzy and the sequential destruction of cyclins A, B and B3. EMBO J 14:4827–4838
    [Google Scholar]
  119. Singh P., Coe J., Hong W. 1995; A role for retinoblastoma protein in potentiating transcriptional activation by the glucocorticoid receptor. Nature 374:562–565 [CrossRef]
    [Google Scholar]
  120. Soulier J., Grollet L., Oksenhendler E. 7 other authors 1995; Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 86:1276–1280
    [Google Scholar]
  121. Stewart Z. A., Pietenpol J. A. 2001; p53 signaling and cell cycle checkpoints. Chem Res Toxicol 14:243–263 [CrossRef]
    [Google Scholar]
  122. Sugimoto M., Nakamura T., Ohtani N. 8 other authors 1999; Regulation of CDK4 activity by a novel CDK4-binding protein, p34SEI-1 . Genes Dev 13:3027–3033 [CrossRef]
    [Google Scholar]
  123. Swanton C., Mann D. J., Fleckenstein B., Neipel F., Peters G., Jones N. 1997; Herpes viral cyclin/Cdk6 complexes evade inhibition by CDK inhibitor proteins. Nature 390:184–187 [CrossRef]
    [Google Scholar]
  124. Swanton C., Card G. L., Mann D., McDonald N., Jones N. 1999; Overcoming inhibitions: subversion of CKI function by viral cyclins. Trends Biochem Sci 24:116–120 [CrossRef]
    [Google Scholar]
  125. Takizawa C. G., Morgan D. O. 2000; Control of mitosis by changes in the subcellular location of cyclin-B1–Cdk1 and Cdc25C. Curr Opin Cell Biol 12:658–665 [CrossRef]
    [Google Scholar]
  126. Toyoshima H., Hunter T. 1994; p27, a novel inhibitor of G1 cyclin–Cdk protein kinase activity, is related to p21. Cell 78:67–74 [CrossRef]
    [Google Scholar]
  127. Trimarchi J. M., Lees J. A. 2002; Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3:11–20
    [Google Scholar]
  128. van Dyk L. F., Virgin H. W. T., Speck S. H. 2000; The murine gammaherpesvirus 68 v-cyclin is a critical regulator of reactivation from latency. J Virol 74:7451–7461 [CrossRef]
    [Google Scholar]
  129. Verschuren E. W., Klefstrom J., Evan G. I., Jones N. 2002; The oncogenic potential of Kaposi's sarcoma-associated herpesvirus cyclin is exposed by p53 loss in vitro and in vivo. Cancer Cell 2:229–241 [CrossRef]
    [Google Scholar]
  130. Verschuren E. W., Hodgson J. G., Gray J. W., Kogan S., Jones N., Evan G. I. 2004; The role of p53 in suppression of KSHV cyclin-induced lymphomagenesis. Cancer Res 64:581–589 [CrossRef]
    [Google Scholar]
  131. Visintin R., Craig K., Hwang E. S., Prinz S., Tyers M., Amon A. 1998; The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol Cell 2:709–718 [CrossRef]
    [Google Scholar]
  132. Vlach J., Hennecke S., Amati B. 1997; Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27. EMBO J 16:5334–5344 [CrossRef]
    [Google Scholar]
  133. Wang Q., Xie S., Chen J., Fukasawa K., Naik U., Traganos F., Darzynkiewicz Z., Jhanwar-Uniyal M., Dai W. 2002; Cell cycle arrest and apoptosis induced by human polo-like kinase 3 is mediated through perturbation of microtubule integrity. Mol Cell Biol 22:3450–3459 [CrossRef]
    [Google Scholar]
  134. Won K. A., Reed S. I. 1996; Activation of cyclin E/CDK2 is coupled to site-specific autophosphorylation and ubiquitin-dependent degradation of cyclin E. EMBO J 15:4182–4193
    [Google Scholar]
  135. Wu L., Timmers C., Maiti B. 12 other authors 2001; The E2F1–3 transcription factors are essential for cellular proliferation. Nature 414:457–462 [CrossRef]
    [Google Scholar]
  136. Xiong Y., Hannon G. J., Zhang H., Casso D., Kobayashi R., Beach D. 1993; p21 is a universal inhibitor of cyclin kinases. Nature 366:701–704 [CrossRef]
    [Google Scholar]
  137. Yang J., Kornbluth S. 1999; All aboard the cyclin train: subcellular trafficking of cyclins and their CDK partners. Trends Cell Biol 9:207–210 [CrossRef]
    [Google Scholar]
  138. Yang R., Morosetti R., Koeffler H. P. 1997; Characterization of a second human cyclin A that is highly expressed in testis and in several leukemic cell lines. Cancer Res 57:913–920
    [Google Scholar]
  139. Zarkowska T. U. S., Harlow E., Mittnacht S. 1997; Monoclonal antibodies specific for underphosphorylated retinoblastoma protein identify a cell cycle regulated phosphorylation site targeted by CDKs. Oncogene 14:249–254 [CrossRef]
    [Google Scholar]
  140. Zhang H. S., Gavin M., Dahiya A., Postigo A. A., Ma D., Luo R. X., Harbour J. W., Dean D. C. 2000; Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC–Rb–hSWI/SNF and Rb–hSWI/SNF. Cell 101:79–89 [CrossRef]
    [Google Scholar]
  141. Zhong W., Wang H., Herndier B., Ganem D. 1996; Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc Natl Acad Sci U S A 93:6641–6646 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.79812-0
Loading
/content/journal/jgv/10.1099/vir.0.79812-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error