Skip to main content

Advertisement

Log in

1997 Whitaker Distinguished Lecture: Models to Solve Mysteries in Biomechanics at the Cellular Level; A New View of Fiber Matrix Layers

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Three different fundamental cellular level transport models are presented to explore current or recently solved mysteries in what appear to be three unrelated problem areas: (i) Starling's hypothesis for lymph formation in the microcirculation; (ii) the cellular level transduction and transmission mechanisms for sensing and communicating mechanical strain in bone; and (iii) the growth of cellular level macromolecular leakage spots in the arterial intima and their relation to the formation of subendothelial liposomes. This trilogy of what appear to be unrelated problems is shown to have a common link, the thin layer of specialized matrix that cells produce at the surface of their plasmalemma membranes in part to regulate the water and solute transport that surrounds them. In each case unexpected model predictions have led to new hypotheses and the design of new experiments which have helped explain long-standing fundamental questions in biomechanics. © 1998 Biomedical Engineering Society.

PAC98: 0130Bb, 8710+e, 8745-k, 8722-q

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Adamson, R. H., and G. Clough. Plasma proteins modify the endothelial cell glycocalyx of frog mesenteric microvessels. J. Physiol. (London)445:473-486, 1992.

    Google Scholar 

  2. Adamson, R. H., and C. C. Michel. Pathways through the intercellular clefts of frog mesenteric capillaries. J. Physiol. (London)466:303-327, 1993.

    Google Scholar 

  3. Baldwin, A. L., and L. M. Wilson. Endothelium increases medial hydraulic conductance of aorta, possibly by release of EDRF. Am. J. Physiol.264:H26-H32, 1993.

    Google Scholar 

  4. Barakat, A. I., P. A. F. Uhthoff, and C. K. Colton. Topographical mapping of sites of enhanced HRP permeability in the normal rabbit aorta. J. Biomech. Eng.114:283-292, 1992.

    Google Scholar 

  5. Bingmann, D., K. Schirrmacher, and D. Jones. Signaling in bone: Electrophysiological studies on cultured cells derived from calvarial fragments of rats. Cells Mater.4:275-285, 1994.

    Google Scholar 

  6. Chuang, P., J. Cheng, S. Lin, K. Jan, D. Wang, and S. Chien. Macromolecular transport across arterial and venous endothelium in rats: Studies with Evans blue-albumin and horseradish peroxidase. Arteriosclerosis10:188-197, 1990.

    Google Scholar 

  7. Cowin, S. C., S. Weinbaum, and Y. Zeng. A case for the bone canaliculi as the anatomical site of strain generated potentials. J. Biomech.28:1281-1297, 1995.

    Google Scholar 

  8. Doty, S. B., and B. H. Schofield. Metabolic and structural changes within osteocytes of rat bone. In: Calcium, Parathyroid Hormone and the Calcitonins, edited by Talmadge and Munson. Amsterdam: Excerpta Medica, 1972, Chap. 30, pp. 353-364.

    Google Scholar 

  9. Frank, J. S., and A. M. Fogelman. Ultrastructure of the intima in WHHL and cholesterol-fed rabbit aortas prepared by ultra-rapid freezing and freeze-etching. J. Lipid Res.30:967- 977, 1989.

    Google Scholar 

  10. Fu, B. M., R. Tsay, F. E. Curry, and S. Weinbaum. A junction-orifice-fiber entrance layer model for capillary permeability: Application to frog mesenteric capillaries. J. Biomech. Eng.116:502-513, 1994.

    Google Scholar 

  11. Fu, B. M., F. E. Curry, and S. Weinbaum. A diffusion wake model for tracer ultrastructure-permeability studies in microvessels. Am. J. Physiol.269:H2124-2140, 1995.

    Google Scholar 

  12. Fu, B., F. E. Curry, R. H. Adamson, and S. Weinbaum. A model for interpreting labeling of interendothelial clefts. Ann. Biomed. Eng.25:375-397, 1997.

    Google Scholar 

  13. Guyton, A. C. A concept of negative interstitial pressure based on pressures in implanted perforated capsules. Circ. Res.12:399-414, 1963.

    Google Scholar 

  14. Harrigan, T. P., and J. J. Hamilton. Bone strain sensation via transmembrane potential changes in surface osteoblasts: Loading rate and microstructural implications. J. Biomech.26:183-200, 1993.

    Google Scholar 

  15. Hillsley, M. V., and J. A. Frangos. Review: Bone tissue engineering: The role of interstitial fluid flow. Biotechnol. Bioeng.43:573-581, 1994.

    Google Scholar 

  16. Hu, X. S., and S. Weinbaum. A new view of Starling's hypothesis at the microstructural level. Am. J. Physiol. (in review).

  17. Huang, Y., D. Rumschitzki, S. Chien, and S. Weinbaum. A fiber matrix model for the growth of macromolecular leakage spots in the arterial intima. J. Biomech. Eng.116:430-445, 1994.

    Google Scholar 

  18. Huang, Y., D. Rumschitzki, S. Chien, and S. Weinbaum. A fiber matrix model for the filtration through fenestral pores in a compressible arterial intima. Am. J. Physiol.272:H2023- H2039, 1997.

    Google Scholar 

  19. Huang, Y., K.-M. Jan, D. Rumschitzki, and S. Weinbaum. Structural changes in rat aortic intima due to transmural pressure. J. Biomech. Eng.(in press).

  20. Hung, C. T., S. R. Pollack, T. M. Reilly, and C. T. Brighton. Real-time calcium response of cultured bone cells to fluid flow. Clin. Orthop. Rel. Res.313:256-269, 1996.

    Google Scholar 

  21. Jeansonne, B. G., F. F. Feagin, R. W. McMinn, R. L. Shoemaker, and W. S. Rehm. Cell-to-cell communication of osteoblasts. J. Dent. Res.58:1415-1423, 1979.

    Google Scholar 

  22. Klein-Nulend, J., C. M. Semeins, N. E. Ajubi, P. J. Nijweide, and E. H. Burger. Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblastscorrelation with prostaglandin upregulation. Biochem. Biophys. Res. Commun.217:740-648, 1995.

    Google Scholar 

  23. Landis, E. M. Micro-injection studies of capillary blood pressure in human skin. Heart15:209-228, 1930a.

    Google Scholar 

  24. Landis, E. M. The capillary blood pressure in mammalian mesentery as determined by the micro-injection method. Am. J. Physiol.93:353-362, 1930b.

    Google Scholar 

  25. Lark, M. W., T. Yeo, H. Mar, S. Lara, I. Hellstrom, K. Hellstrom, and T. N. Wight. Arterial chondroitin sulfate proteoglycan: Localization with a monoclonal antibody. J. Histochem. Cytochem.36:1211-1221, 1988.

    Google Scholar 

  26. Levick, J. R. Capillary filtration-absorption balance reconsidered in light of dynamic extravascular factors. Exp. Physiol.76:825-857, 1991.

    Google Scholar 

  27. Levick, J. R. An Introduction to Cardiovascular Physiology. Oxford: Butterworth-Heinemann Ltd., 1995, Chap. 10, pp. 158-187.

    Google Scholar 

  28. Lin, S., K. Jan, G. Schuessler, S. Weinbaum, and S. Chien. Enhanced macromolecular permeability of aortic endothelial cells in association with mitosis. Arteriosclerosis73:223- 232, 1988.

    Google Scholar 

  29. Lin, S., K. Jan, S. Weinbaum, and S. Chien. Transendothelial transport of low density lipoprotein in association with cell mitosis in rat aorta. Arteriosclerosis9:230-235, 1989.

    Google Scholar 

  30. Lin, S. J., K. M. Jan, and S. Chien. The role of dying endothelial cells in transendothelial macromolecular transport. Arteriosclerosis10:188-197, 1990.

    Google Scholar 

  31. Malinauskas, R. A., R. A. Herrmann, and G. A. Truskey. The distribution of intimal white blood cells in the normal rabbit aorta. Arteriosclerosis115:147-163, 1995.

    Google Scholar 

  32. Michel, C. C. Capillary permeability and how it may change. J. Physiol. (London)404:1-29, 1988.

    Google Scholar 

  33. Michel, C. C. Starling: The formulation of his hypothesis of microvascular fluid exchange and its significance after 100 years. Exp. Physiol.82:1-30, 1997.

    Google Scholar 

  34. Michel, C. C., and M. E. Phillips. Steady-state fluid filtration at different capillary pressures in perfused frog mesenteric capillaries. J. Physiol. (London)388:421-435, 1987.

    Google Scholar 

  35. Otter, M. W., V. R. Palmieri, D. D. Wu, K. G. Seiz, L. A. MacGinitie, and G. V. B. Cochran. A comparative analysis of streaming potentials in vivo and in vitro. J. Orthop. Res.10:710-719, 1992.

    Google Scholar 

  36. Pappenheimer, J. R., and A. Soto-Rivera. Effective osmotic pressure of the plasma proteins and other quantities associated with the capillary circulation in the hindlimbs of cats and dogs. Am. J. Physiol.152:471-491, 1948.

    Google Scholar 

  37. Rubin, C. T., and K. J. McLeod. Inhibition of osteopenia by biophysical intervention. In: Osteoporosis, edited by R. Marcus, D. Feldman, and J. Kelsey. New York: Academic, 1996, pp. 351-371.

    Google Scholar 

  38. Salzstein, R. A., S. R. Pollack, A. F. T. Mak, and N. Petrov. Electromechanical potentials in cortical bone-I. A continuum approach. J. Biomech.20:261-270, 1987.

    Google Scholar 

  39. Salzstein, R. A., and S. R. Pollack. Electromechanical potentials in cortical bone-II. Experimental analysis. J. Biomech.20:271-280, 1987.

    Google Scholar 

  40. Scott, G. C., and E. Korostoff. Oscillatory and step response to electromechanical phenomena in human and bovine bone. J. Biomech.23:127-143, 1990.

    Google Scholar 

  41. Simionescu, N., E. Vasile, F. Lupo, G. Popescu, and M. Simionescu. Prelesional events in artherogenesis. Accumulation of extracellular cholesterol-rich liposomes in the arterial intima and cardiac valves of the hyperlipidemic rabbit. Am. J. Pathol.123:1109-1125, 1986.

    Google Scholar 

  42. Starkebaum, W., S. R. Pollack, and E. Korostoff. Microelectrode studies of stress-generated potentials in four point bending of bone. J. Biomed. Mater. Res.13:729-751, 1979.

    Google Scholar 

  43. Starling, E. H. On the absorption of fluids from the convective tissue spaces. J. Physiol. (London)19:312-326, 1896.

    Google Scholar 

  44. Stemerman, M. B., E. M. Morrel, K. R. Burke, C. K. Colton, K. A. Smith, and R. S. Lees. Local variation in arterial wall permeability to low density lipoprotein in normal rabbit aorta. Arteriosclerosis6:64-69, 1986.

    Google Scholar 

  45. Tanaka, T., and A. Sakano. Differences in permeability of microperoxidase and horseradish peroxidase into alveolar bone of developing rats. J. Dental Res.64:870-876, 1985.

    Google Scholar 

  46. Tedgui, A., and M. J. Lever. Filtration through damaged and undamaged rabbit thoracic aorta. Am. J. Physiol.247:H784- H791, 1984.

    Google Scholar 

  47. Truskey, G. A., W. L. Roberts, R. A. Herrmann, and R. A. Malinauskas. Measurement of endothelial permeability to 125I-low density lipoproteins in rabbit arteries by use of en face preparations. Circ. Res.71:883-897, 1992.

    Google Scholar 

  48. Vink, H., and B. R. Duling. Indentification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ. Res.79:581-589, 1996.

    Google Scholar 

  49. Weinbaum, S., G. Tzeghai, P. Ganatos, R. Pfeffer, and S. Chien. Effect of cell turnover and leaky junctions on arterial macromolecular transport. Am. J. Physiol.248:H945-H960, 1985.

    Google Scholar 

  50. Weinbaum, S., S. C. Cowin, and Y. Zeng. A model for the fluid shear stress excitation of membrane ion channels in osteocytic processes due to bone strain. In: Advances in Bioengineering, edited by R. Vanderby, Jr. New York: Am. Soc. Mech. Engrs., 1991, pp. 317-320.

    Google Scholar 

  51. Weinbaum, S., R. Tsay, and F. E. Curry. A three-dimensional junction-pore-fiber matrix model for capillary permeability. Microvasc. Res.44:85-111, 1992.

    Google Scholar 

  52. Weinbaum, S., S. C. Cowin, and Y. Zeng. Excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech.27:339-360, 1994.

    Google Scholar 

  53. Wolff, J. Das Gesetz der Transformation der Knochen. Hirschwald: Berlin, 1892.

    Google Scholar 

  54. Yuan, F., S. Chien, and S. Weinbaum. A new view of convective-diffusive transport processes in the arterial intima. J. Biomech. Eng.113:314-329, 1991.

    Google Scholar 

  55. Zeng, Y., S. C. Cowin, and S. Weinbaum. A fiber matrix model for fluid flow and streaming potentials in the canaliculi of an osteon. Ann. Biomed. Eng.22:280-292, 1994.

    Google Scholar 

  56. Zhang, D., S. C. Cowin, and S. Weinbaum. Electrical signal transmission and gap junction regulation in a bone cell network: A cable model for an osteon. Ann. Biomed. Eng.25:357-374, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinbaum, S. 1997 Whitaker Distinguished Lecture: Models to Solve Mysteries in Biomechanics at the Cellular Level; A New View of Fiber Matrix Layers. Annals of Biomedical Engineering 26, 627–643 (1998). https://doi.org/10.1114/1.134

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.134

Navigation