Skip to main content

Advertisement

Log in

Computational Model for Forced Expiration from Asymmetric Normal Lungs

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We present a computational model to predict maximal expiration through a morphometry-based asymmetrical bronchial tree. A computational model with the Horsfield-like geometry of the airway structure, including wave-speed flow limitation and taking into consideration separate airflows from several independent alveolar compartments has been derived. The airflow values are calculated for quasistatic conditions by solving a system of nonlinear differential equations describing static pressure losses along the airway branches. Calculations done for succeeding lung volumes result in the semidynamic maximal expiratory flow–volume (MEFV) curve. Simulations performed show that the model captures the main phenomena observed in vivo during forced expiration: effort independence of the flow–volume curve for the most of vital capacity, independence of limited flow on the properties of airways downstream to the choke points, characteristic differences of lung regional pressures and volumes, and a shape of their variability during exhalation. Some new insights into the flow limitation mechanism were achieved. First, flow limitation begins at slightly different time instants in individual branches of the bronchial tree, however after a short period of time, all regional flows are limited in a parallel fashion. Hence, total flow at the mouth is limited for most of the expired lung volume. Second, each of the airway branches contribute their own flow–volume shape and just these individual flows constitute the measured MEFV curve. Third, central airway heterogeneity can play a crucial role in modification of the entire flow. Fourth, the bronchial tree asymmetry is responsible for a nongravitational component of regional volume variability. Finally, increased inhomogeneity yields results that cannot be explained nor re-created with the use of a symmetrical structure of the bronchial tree.© 2003 Biomedical Engineering Society.

PAC2003: 8719Uv, 8710+e, 8718Bb

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agostoni, E., and W. O. Fenn. Velocity of muscle shortening as a limiting factor in respiratory air flow. J. Appl. Physiol.15:349–353, 1960.

    Google Scholar 

  2. Anafi, R. C., and T. A. Wilson. Airway stability and heterogeneity in the constricted lung. J. Appl. Physiol.91:1185–1192, 2001.

    Google Scholar 

  3. Barnea, O., S. Abbould, A. Guber, and I. Bruderman. New model-based indices for maximum expiratory flow–volume curve in patients with chronic obstructive pulmonary disease. Comput. Biol. Med.26:123–131, 1996.

    Google Scholar 

  4. Bloch, K. E., C. L. Georgescu, E. W. Russi, and W. Weder. Gain and subsequent loss of lung function after lung volume reduction surgery in cases of severe emphysema with different morphologic patterns. J. Thorac. Cardiovasc. Surg.123:845–854, 2002.

    Google Scholar 

  5. Bogaard, J. M., S. E. Overbeek, A. F. M. Verbraak, C. Vons, H. T. M. Folgering, Th. W. van der Mark, C. M. Roos, P. J. Sterk, and the Dutch CNSLD study group. Pressure–volume analysis of the lung with an exponential and linear-exponential model in asthma and COPD. Eur. Respir. J.8:1525–1531, 1995.

    Google Scholar 

  6. Cederlund, K., U. Tylen, L. Jorfeldt, and P. Aspelin. Classification of emphysema in candidates for lung volume reduction surgery (): A new objective and surgically oriented model for describing CT severity and heterogeneity. Chest122:590–596, 2002.

    Google Scholar 

  7. Colebatch, H. J. H., C. K. Y. Ng, and N. Nikov. Use of an exponential function for elastic recoil. J. Appl. Physiol.: Respir., Environ. Exercise Physiol.46:387–393, 1979.

    Google Scholar 

  8. Collins, J. M., A. H. Shapiro, E. Kimmel, and R. D. Kamm. The steady expiratory pressure–flow relation in a model pulmonary bifurcation. J. Biomech. Eng.115:299–305, 1993.

    Google Scholar 

  9. Dawson, S. D., and E. A. Elliott. Wave-speed limitation on expiratory flow—A unifying concept. J. Appl. Physiol.: Respir., Environ. Exercise Physiol.43:498–515, 1977.

    Google Scholar 

  10. Elad, D., and R. D. Kamm. Parametric evaluation of forced expiration using a numerical model. J. Biomech. Eng.111:192–199, 1989.

    Google Scholar 

  11. Elad, D., R. D. Kamm, and A. H. Shapiro. Tube law for the intrapulmonary airway. J. Appl. Physiol.65:7–13, 1988.

    Google Scholar 

  12. Elad, D., R. D. Kamm, and A. H. Shapiro. Mathematical simulation of forced expiration. J. Appl. Physiol.65:14–25, 1988.

    Google Scholar 

  13. Fredberg, J. J., and D. Stamenovic. On the imperfect elasticity of lung tissue. J. Appl. Physiol.67:2408–2419, 1989.

    Google Scholar 

  14. Fry, D. L.A preliminary lung model for simulating the aerodynamics of the bronchial tree. Comput. Biomed. Res.2:111–134, 1968.

    Google Scholar 

  15. Fry, D. L., R. V. Ebert, W. W. Stead, and C. C. Brown. The mechanics of pulmonary ventilation in normal subjects and in patients with emphysema. Am. J. Med.16:80–97, 1954.

    Google Scholar 

  16. Georgopoulos, D., A. Gomez, and S. N. Mink. Factors determining lobar emptying during maximal and partial forced deflations in nonhomogeneous airway obstruction in dogs. Am. J. Respir. Crit. Care Med.149:1241–1247, 1994.

    Google Scholar 

  17. Georgopoulos, D., S. N. Mink, L. Oppenheimer, and N. R. Anthonisen. How is maximal expiratory flow reduced in canine postpneumonectomy lung growth?J. Appl. Physiol.71:834–840, 1991.

    Google Scholar 

  18. Gillis, H. L., and K. R. Lutchen. How heterogeneous bronchoconstriction affects ventilation distribution in human lungs: a morphometric model. Ann. Biomed. Eng.27:14–22, 1999.

    Google Scholar 

  19. Gillis, H. L., and K. R. Lutchen. Airway remodeling in asthma amplifies heterogeneities in smooth muscle shortening causing hyperresponsiveness. J. Appl. Physiol.86:2001–2012, 1999.

    Google Scholar 

  20. Hammersley, J. R., and D. E. Olson. Physical model of the smaller pulmonary airways. J. Appl. Physiol.72:2402–2414, 1992.

    Google Scholar 

  21. Horsfield, K., G. Dart, D. E. Olson, and G. Cumming. Models of the human bronchial tree. J. Appl. Physiol.31:207–217, 1971.

    Google Scholar 

  22. Hughes, J. M. B., F. G. Hoppin, Jr., and J. Mead. Effect of lung inflation on bronchial length and diameter in excised lungs. J. Appl. Physiol.32:25–35, 1972.

    Google Scholar 

  23. Hyatt, R. E.Expiratory flow limitation. J. Appl. Physiol.: Respir., Environ. Exercise Physiol.55:1–8, 1983.

    Google Scholar 

  24. Hyatt, R. E., D. P. Schilder, and D. L. Fry. Relationship between maximum expiratory flow and degree of lung inflation. J. Appl. Physiol.13:331–336, 1958.

    Google Scholar 

  25. Jaeger, M. J., and H. Matthys. The pattern of flow in the upper human airways. Respir. Physiol.6:113–127, 1969.

    Google Scholar 

  26. Lambert, R. K.A new computational model for expiratory flow from nonhomogeneous human lungs. J. Biomech. Eng.111:200–205, 1989.

    Google Scholar 

  27. Lambert, R. K.Sensitivity and specificity of the computational model for maximal expiratory flow. J. Appl. Physiol.: Respir., Environ. Exercise Physiol.57:958–970, 1984.

    Google Scholar 

  28. Lambert, R. K., T. A. Wilson, R. E. Hyatt, and J. R. Rodarte. A computational model for expiratory flow. J. Appl. Physiol.: Respir., Environ. Exercise Physiol.52:44–56, 1982.

    Google Scholar 

  29. Landau, L. I., L. M. Taussig, P. T. Macklem, and P. H. Beaudry. Contribution of inhomogeneity of lung units to the maximal expiratory flow–volume curve in children with asthma and cystic fibrosis. Am. Rev. Respir. Dis.111:725–731, 1975.

    Google Scholar 

  30. Lutchen, K. R., J. L. Greenstein, and B. Suki. How inhomogeneities and airway walls affect frequency dependence and separation of airway and tissue properties. J. Appl. Physiol.80:1696–1707, 1996.

    Google Scholar 

  31. Lutchen, K. R., A. Jensen, H. Atileh, D. W. Kaczka, E. Israel, B. Suki, and E. P. Ingenito. Airway constriction pattern is a central component of asthma severity. Am. J. Respir. Crit. Care Med.164:207–215, 2001.

    Google Scholar 

  32. McNamara, J. J., R. G. Castile, G. M. Glass, and J. J. Fredberg. Heterogeneous lung emptying during forced expiration. J. Appl. Physiol.63:1648–1657, 1987.

    Google Scholar 

  33. McNamara, J. J., R. G. Castile, M. S. Ludwig, G. M. Glass, R. H. Ingram, Jr., and J. J. Fredberg. Heterogeneous regional behavior during forced expiration before and after histamine inhalation in dogs. J. Appl. Physiol.76:356–360, 1994.

    Google Scholar 

  34. Mead, J.Analysis of the configuration of maximum expiratory flow–volume curves. J. Appl. Physiol.: Respir., Environ. Exercise Physiol.44:156–165, 1978.

    Google Scholar 

  35. Mead, J., J. M. Turner, P. T. Macklem, and J. B. Little. Significance of the relationship between lung recoil pressure and maximum expiratory flow. J. Appl. Physiol.22:95–108, 1967.

    Google Scholar 

  36. Melissinos, C. G., P. Webster, Y. K. Tien, and J. Mead. Time dependence of maximum flow as an index of nonuniform emptying. J. Appl. Physiol.: Respir., Environ. Exercise Physiol.47:1043–1050, 1979.

    Google Scholar 

  37. Milic-Emili, J. J., A. M. Henderson, M. B. Dolovich, D. Trop, and K. Kaneko. Regional distribution of inspired gas in the lung. J. Appl. Physiol.21:749–759, 1966.

    Google Scholar 

  38. Mink, S. N.Mechanism of lobar alveolar pressure decline during forced deflation in canine regional emphysema. J. Appl. Physiol.82:632–643, 1997.

    Google Scholar 

  39. Mroczka, J., and A. G. Polak. Noninvasive method for measurement of respiratory system parameters. Proceedings of the XIII IMEKO World Congress, Torino, 5–9 September 1994, Vol. 2, pp. 1561–1565.

  40. Pardaens, J., K. P. van de Woestijne, and J. Clément. A physical model for expiration. J. Appl. Physiol.33:479–490, 1972.

    Google Scholar 

  41. Pardaens, J., K. P. van de Woestijne, and J. Clément. Simulation of regional lung emptying during slow and forced expirations. J. Appl. Physiol.39:191–198, 1975.

    Google Scholar 

  42. Polak, A. G.A forward model for maximum expiration. Comput. Biol. Med.28:613–625, 1998.

    Google Scholar 

  43. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes: The Art of Scientific Computing. Cambridge, MA: Cambridge University Press, 1986.

    Google Scholar 

  44. Pride, N. B., S. Permutt, R. L. Riley, and B. Bromberger-Barnea. Determinants of maximal expiratory flow from the lungs. J. Appl. Physiol.23:646–662, 1967.

    Google Scholar 

  45. Renotte, C., M. Remy, and Ph. Saucez. Dynamic model of airway pressure drop. Med. Biol. Eng. Comput.36:101–106, 1998.

    Google Scholar 

  46. Reynolds, D. B.Steady expiratory flow-pressure relationship of a model of the human bronchial tree. J. Biomech. Eng.104:153–158, 1982.

    Google Scholar 

  47. Reynolds, D. B., and J.-S. Lee. Steady pressure-flow relationship of a model of the canine bronchial tree. J. Appl. Physiol.: Respir., Environ. Exercise Physiol.51:1072–1079, 1981.

    Google Scholar 

  48. Robatto, F. M., S. Simard, and M. S. Ludwig. How changes in the serial distribution of bronchoconstriction affect lung mechanics. J. Appl. Physiol.74:2838–2847, 1993.

    Google Scholar 

  49. Salazar, E., and J. H. Knowles. An analysis of pressure-volume characteristics of the lungs. J. Appl. Physiol.19:97–104, 1964.

    Google Scholar 

  50. Shapiro, A. H.Steady flow in collapsible tubes. J. Biomech. Eng.99:126–147, 1977.

    Google Scholar 

  51. Shin, J. J., D. Elad, and R. D. Kamm. Simulation of forced breathing maneuvers. In: Biological Flow, edited by M. Y. Jaffrin and C. Caro. New York: Plenum, 1995.

    Google Scholar 

  52. Solway, J., J. J. Fredberg, R. H. Ingram, Jr., O. F. Pedersen, and J. M. Drazen. Interdependent regional lung emptying during forced expiration: a transistor model. J. Appl. Physiol.62:2013–1025, 1987.

    Google Scholar 

  53. Sud, V. K., R. Srinivasan, J. B. Charles, and M. W. Bungo. Effect of lover-body negative pressure on blood flow with applications to the human cardiovascular system. Med. Biol. Eng. Comput.31:569–575, 1993.

    Google Scholar 

  54. Thorpe, C. W., and J. H. T. Bates. Effect of stochastic heterogenity on lung impedance during acute bronchoconstriction: a model analysis. J. Appl. Physiol.82:1616–1625, 1997.

    Google Scholar 

  55. Thurnheer, R., H. Engel, W. Weder, U. Stammberger, I. Laube, E. W. Russi, and K. E. Bloch. Role of lung perfusion scintigraphy in relation to chest computed tomography and pulmonary function in the evaluation of candidates for lung volume reduction surgery. Am. J. Respir. Crit. Care Med.159:301–310, 1999.

    Google Scholar 

  56. Topulos, G. P., G. Nielan, G. Glass, and J. J. Fredberg. Interdependence of regional expiratory flows limits alveolar pressure differences. J. Appl. Physiol.69:1413–1418, 1990.

    Google Scholar 

  57. Verbanck, S., D. Schuermans, A. Van Muylem, M. Noppen, and W. Vincken. Ventilation distribution during histamine provocation. J. Appl. Physiol.83:1907–1916, 1997.

    Google Scholar 

  58. Verbanck, S., D. Schuermans, M. Noppen, W. Vincken, and M. Paiva. Methacholine versus histamine: paradoxical response of spirometry and ventilation distribution. J. Appl. Physiol.91:2587–2594, 2001.

    Google Scholar 

  59. Warner, D. O., R. E. Hyatt, and K. Rehder. Inhomogeneity during deflation of excised canine lungs. I. Alveolar pressures. J. Appl. Physiol.65:1757–1765, 1988.

    Google Scholar 

  60. Warner, D. O., R. E. Hyatt, and K. Rehder. Inhomogeneity during deflation of excised canine lungs. II. Alveolar volumes. J. Appl. Physiol.65:1766–1774, 1988.

    Google Scholar 

  61. Weibel, E. R. Morphometry of the Human Lung. New York: Academic, 1963.

    Google Scholar 

  62. Wheatley, J. R., T. C. Amis, and L. A. Engel. Nasal and oral airway pressure–flow relationships. J. Appl. Physiol.71:2317–2324, 1991.

    Google Scholar 

  63. Wiggs, B. R., R. Moreno, J. C. Hogg, C. Hilliam, and P. D. Paré. A model of the mechanics of airway narrowing. J. Appl. Physiol.69:849–860, 1990.

    Google Scholar 

  64. Wilson, T. A., J. J. Fredberg, J. R. Rodarte, and R. E. Hyatt. Interdependence of regional expiratory flow. J. Appl. Physiol.59:1924–1928, 1985.

    Google Scholar 

  65. Wilson, T. A., M. J. Hill, and R. D. Hubmayr. Regional lung volume trajectories during expiratory flow in dogs. J. Appl. Physiol.80:1144–1148, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polak, A.G., Lutchen, K.R. Computational Model for Forced Expiration from Asymmetric Normal Lungs. Annals of Biomedical Engineering 31, 891–907 (2003). https://doi.org/10.1114/1.1588651

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1588651

Navigation