Skip to main content
Log in

Conductance Method for the Measurement of Cross-Sectional Areas of the Aorta

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A modified conductance method to determine the cross-sectional areas (CSAs) of arteries in piglets was evaluated in vivo. The method utilized a conductance catheter having four electrodes. Between the outer electrodes an alternating current was applied and between the inner electrodes the induced voltage difference was measured and converted into a conductance. CSA was determined from measured conductance minus parallel conductance, which is the conductance of the tissues surrounding the vessel times the length between the measuring electrodes of the conductance catheter divided by the conductivity of blood. The parallel conductance was determined by injecting hypertonic saline to change blood conductivity. The conductivity of blood was calculated from temperature and hematocrit and corrected for maximal deformation and changes in orientation of the erythrocytes under shear stress conditions. The equations to calculate the conductivity of blood were obtained from in vitro experiments. In vivo average aortic CSAs, determined with the conductance method CSA (G) in five piglets, were compared to those determined with the intravascular ultrasound method CSA(IVUS). The regression equation between both values was CSA (G) =−0.09+1.00·CSA(IVUS) r=0.97, n=53. The mean difference between the values was −0.29% · 5.57% (2 standard deviations). We conclude that the modified conductance method is a reliable technique to estimate the average cross-sectional areas of the aorta in piglets. © 1999 Biomedical Engineering Society.

PAC99: 8780-y, 8437+q, 8719Nn

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Altman, D. G. In: Practical Statistics for Medical Research. London: Chapman and Hall, 1990, pp. 398–399.

  2. Baan, J., T. T. A. Jong, P. L. M. Kerkhof, R. J. Moene, A. D. Van Dijk, E. T. Van der Velde, and J. Koops. Continuous stroke volume and cardiac output from intraventricular dimensions obtained with impedance catheter. Cardiovasc. Res. 15:328–334, 1981.

    Google Scholar 

  3. Baan, J., E. T. Van der Velde, H. G. De Bruin, G. J. Smeenk, J. Koops, D. Temmerman, P. J. Senden, and B. Buis. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 70:812–823, 1984.

    Google Scholar 

  4. Boesiger, P., S. E. Maier, L. Kecheng, M. B. Scheidegger, and D. Meier. Visualization and quantification of the human blood flow by magnetic resonance imaging. J. Biomech. 25(1):55–67, 1992.

    Google Scholar 

  5. Edgerton, R. H. Conductivity of sheared suspensions of ellipsoidal particles with application to blood flow. IEEE Trans. Biomed. Eng. 21(1):33–44, 1974.

    Google Scholar 

  6. Ferguson, J. J. D., M. J. Miller, P. Sahagian, J. M. Aroesty, and R. G. McKay. Assessment of aortic pressure-volume relationships with an impedance catheter. Cathet. Cardiovasc Diagn 15:27–36, 1988.

    Google Scholar 

  7. Geddes, L. A., and L. E. Baker. Principles of Applied Biomedical Instrumentation, 3rd ed. New York: Wiley, 1989.

    Google Scholar 

  8. Geddes, L. A., and H. Kidder. Specific resistance of blood at body temperature II. Med. Biol. Eng. 3:180–185, 1976.

    Google Scholar 

  9. Hardeman, M. R., P. T. Goedhart, J. G. G. Dobbe, and K. P. Lettinga. Laser-assisted optical rotational cell analyser (L.O.R.C.A.); A new instrument for measurement of various structural hemorheological parameters. Clin. Hemorheol. 14(4):605–618, 1994.

    Google Scholar 

  10. Hettrick, D. A., J. H. Battocletti, J. J. Ackmann, J. H. Linehan, and D. C. Warltier. In vitro and finite-element model investigation of the conductance technique for measurement of aortic segmental volume. Ann. Biomed. Eng. 24:675–684, 1996.

    Google Scholar 

  11. Hettrick, D. A., J. H. Battocletti, J. J. Ackmann, J. H. Linehan, and D. C. Warltier. Effects of physical parameters on the cylindrical model for volume measurement by conductance. Ann. Biomed. Eng. 25:126–134, 1997.

    Google Scholar 

  12. Jansen, J. R. C., E. Hoorn, J. Van Goudoever, and A. Versprille. A computerized respiratory system including test functions of lung and circulation. J. Appl. Physiol. 67(4):1687–1691, 1989.

    Google Scholar 

  13. Kun, S., and R. A. Peura. Analysis of conductance volumetric measurement error sources. Med. Biol. Eng. Comput. 32:94–100, 1994.

    Google Scholar 

  14. Lankford, E. B., D. A. Kass, W. L. Maughan, and A. A. Shouskas. Does volume catheter parallel conductance vary during a cardiac cycle? Am. J. Physiol. 258:H1933-H1942, 1990.

    Google Scholar 

  15. Liebman, F. M. Electrical impedance pulse tracings from pulsatile blood flow in rigid tubes and volume restricted vascular beds: theoretical explanations. Ann. (N.Y.) Acad. Sci. 259:437–551, 1974.

    Google Scholar 

  16. Nakajima, T., K. Kon, N. Maeda, K. Tsunekawa, and T. Shiga. Deformation response of red blood cells in oscillatory shear flow. Am. J. Physiol. 259:H1071-H1078, 1990.

    Google Scholar 

  17. Ninomiya, M., M. Fujii, M. Niwa, K. Sakamoto, and H. Kanai. Physical properties of flowing blood. Biorheology 25(1–2):319–328, 1988.

    Google Scholar 

  18. Peura, R. A., B. C. Penney, J. Arcuri, F. A. Anderson, and H. B. Wheeler. Influence of erythrocyte velocity on impedance plethysmographic measurements. Med. Biol. Eng. Comput. 16(2):147–154, 1978.

    Google Scholar 

  19. Sakamoto, K., and H. Kanai. Electrical characteristics of flowing blood. IEEE Trans. Biomed. Eng. 26(12):686–695, 1979.

    Google Scholar 

  20. Schmid-Schönbein, H., and R. Wells. Fluid drop-like erythrocytes under shear. Science 16(5):288–291, 1969.

    Google Scholar 

  21. Schwan, H. P. Determination of biological impedance. In: Physical Techniques in Biological Research, edited by W. Nastuck. New York: Academic, 1963.

    Google Scholar 

  22. Skalak, R., and C. Zhu. Rheological aspects of red blood cell aggregation. Biorheology 27(3–4):309–325, 1990.

    Google Scholar 

  23. Smith, J. E., N. Mohandas, and S. B. Shohet. Variability in erythrocyte deformability among various animals. Am. J. Physiol. 236(5):H725-H730, 1979.

    Google Scholar 

  24. Szwarc, R. S., L. L. Mickleborough, S. Mizuno, J. Wilson, P. Liu, and M. Shanas. Conductance catheter measurements of left ventricular volume in the intact dog: Parallel conductance is independent of left ventricular size. Cardiovasc. Res. 28:252–258, 1994.

    Google Scholar 

  25. Visser, K. R. Electrical properties of flowing blood and impedance cardiography. Ann. Biomed. Eng. 17(5):463–473, 1989.

    Google Scholar 

  26. Visser, K. R., R. Lamberts, H. H. M. Korsten, and W. G. Zijlstra. Observations on blood flow related electrical impedance changes in rigid tubes. Pflügers Arch. Ges. Physiol. Menschen Tiere 366(2–3):289–291, 1976.

    Google Scholar 

  27. Wenguang, L., W. J. Gussenhoven, J. G. Bosch, F. Mastik, J. H. C. Reiber, and N. Bom. A computer-aided analysis system for the quantitative assessment of intravascular ultrasound images. Comput. Cardiol. 1:333–336, 1990.

    Google Scholar 

  28. Wenguang, L., W. J. Gussenhoven, Y. Zhong, S. H. K. The, C. Di Mario, S. Madretsma, F. Van Egmond, F. De Feyter, H. Pieterman, H. Van Urk, H. Rijsterborgh, and N. Bom. Validation of quantitative analysis of intravascular ultrasound images. Int. J. Cardiac Images 6:247–253, 1991.

    Google Scholar 

  29. Woodward, J. C., and C. D. Bertram. Effect of radial position on volume measurements using the conductance catheter. Med. Biol. Eng. Comput. 27:25–35, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kornet, L., Jansen, J.R.C., Gussenhoven, E.J. et al. Conductance Method for the Measurement of Cross-Sectional Areas of the Aorta. Annals of Biomedical Engineering 27, 141–150 (1999). https://doi.org/10.1114/1.219

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.219

Navigation