Skip to main content
Log in

Advection and Diffusion of Substances in Biological Tissues With Complex Vascular Networks

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

For highly diffusive solutes the kinetics of blood–tissue exchange is only poorly represented by a model consisting of sets of independent parallel capillary–tissue units. We constructed a more realistic multicapillary network model conforming statistically to morphometric data. Flows through the tortuous paths in the network were calculated based on constant resistance per unit length throughout the network and the resulting advective intracapillary velocity field was used as a framework for describing the extravascular diffusion of a substance for which there is no barrier or permeability limitation. Simulated impulse responses from the system, analogous to tracer water outflow dilution curves, showed flow-limited behavior over a range of flows from about 2 to 5 ml min−1 g−1, as is observed for water in the heart in vivo. The present model serves as a reference standard against which to evaluate computationally simpler, less physically realistic models. The simulated outflow curves from the network model, like experimental water curves, were matched to outflow curves from the commonly used axially distributed models only by setting the capillary wall permeability–surface area (PS) to a value so artifactually low that it is incompatible with the experimental observations that transport is flow limited. However, simple axially distributed models with appropriately high PSs will fit water outflow dilution curves if axial diffusion coefficients are set at high enough values to account for enhanced dispersion due to the complex geometry of the capillary network. Without incorporating this enhanced dispersion, when applied to experimental curves over a range of flows, the simpler models give a false inference that there is recruitment of capillary surface area with increasing flow. Thus distributed models must account for diffusional as well as permeation processes to provide physiologically appropriate parameter estimates. © 2000 Biomedical Engineering Society.

PAC00: 8719-j, 8710+e

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Audi, S. H., C. A. Dawson, J. H. Linehan, G. S. Krenz, S. B. Ahlf, and D. L. Roerig. An interpretation of 14C-urea and 14C-primidone extraction in isolated rabbit lungs. Ann. Biomed. Eng.24:337-351, 1996.

    Google Scholar 

  2. Audi, S. H., C. A. Dawson, J. H. Linehan, G. S. Krenz, S. B. Ahlf, and D. L. Roerig. Pulmonary disposition of lipophilic amine compounds in the isolated perfused rabbit lung. J. Appl. Physiol.84:516-530, 1998.

    Google Scholar 

  3. Bassingthwaighte, J. B., T. Yipintsoi, and R. B. Harvey. Microvasculature of the dog left ventricular myocardium. Microvasc. Res.7:229-249, 1974.

    Google Scholar 

  4. Bassingthwaighte, J. B.A concurrent flow model for extraction during transcapillary passage. Circ. Res.35:483-503, 1974.

    Google Scholar 

  5. Bassingthwaighte, J. B.Physiology and theory of tracer washout techniques for the estimation of myocardial blood flow: Flow estimation from tracer washout. Prog. Cardiovasc. Dis.20:165-189, 1977.

    Google Scholar 

  6. Bassingthwaighte, J. B., T. Yipintsoi, and T. J. Knopp. Diffusional arteriovenous shunting in the heart. Microvasc. Res.28:233-253, 1984.

    Google Scholar 

  7. Bassingthwaighte, J. B., and C. A. Goresky. Modeling in the analysis of solute and water exchange in the microvasculature. In: Handbook of Physiology. Sec. 2, The Cardiovascular System. Vol. IV, The Microcirculation, edited by E. M. Renkin and C. C. Michel. Bethesda, MD: American Physiology Society, 1984, pp. 549–626.

  8. Bassingthwaighte, J. B., F. P. Chinard, C. Crone, C. A. Goresky, N. A. Lassen, R. S. Reneman, and K. L. Zierler. Terminology for mass transport and exchange. Am. J. Physiol. Heart Circ. Physiol.250:H539-H545, 1986.

    Google Scholar 

  9. Bassingthwaighte, J. B., C. Y. Wang, and I. S. Chan. Blood–tissue exchange via transport and transformation by endothelial cells. Circ. Res.65:997-1020, 1989.

    Google Scholar 

  10. Bassingthwaighte, J. B., A. Deussen, R. P. Beyer, I. S. Chan, G. R. Raymond, R. B. King, T. R. Bukowski, J. D. Ploger, K. Kroll, J. Revenaugh, J. M. Link, and K. A. Krohn. Oxygen transport in the myocardium. In: Advances in Biological Heat and Mass Transfer HTD, edited by J. J. McGrath. New York, NY: ASME, 1992, Vol. 231, pp. 113–120.

  11. Bassingthwaighte, J. B., I. S. Chan, and C. Y. Wang. Computationally efficient algorithms for capillary convection–permeation–diffusion models for blood–tissue exchange. Ann. Biomed. Eng.20:687-725, 1992.

    Google Scholar 

  12. Batra, S., and K. Rakusan. Morphometric analysis of capillary nets in rat myocardium. Adv. Exp. Med. Biol.277:377-385, 1990.

    Google Scholar 

  13. Bohr, C.Über die spezifische Tätigkeit der Lungen bei der respiratorischen Gasaufnahme und ihr Verhalten zu der durch die Alveolarwand stattfindenden Gasdiffusion. Skand. Arch. Physiol.22:221-280, 1909.

    Google Scholar 

  14. Chan, I. S., A. A. Goldstein, and J. B. Bassingthwaighte. SENSOP: A derivative-free solver for nonlinear least squares with sensitivity scaling. Ann. Biomed. Eng.21:621-631, 1993.

    Google Scholar 

  15. Chen, J. L., L. Wei, V. Acuff, D. Bereczke, F. J. Hans, T. Otsuka, W. Finnegan, C. Patlak, and J. Fenstermacher. Slightly altered permeability–surface area products imply some cerebral capillary recruitment during hypercapnia. Microvasc. Res.48:190-211, 1994.

    Google Scholar 

  16. Cousineau, D. F., C. A. Goresky, C. P. Rose, A. Simard, and A. J. Schwab. Effects of flow, perfusion pressure, and oxygen consumption on cardiac capillary exchange. J. Appl. Physiol.78:1350-1359, 1995.

    Google Scholar 

  17. Crone, C.The permeability of capillaries in various organs as determined by the use of the "indicator diffusion" method. Acta Physiol. Scand.58:292-305, 1963.

    Google Scholar 

  18. Deussen, A., and J. B. Bassingthwaighte. Modeling [15O] oxygen tracer data for estimating oxygen consumption. Am. J. Physiol. Heart Circ. Physiol.270:H1115-H1130, 1996.

    Google Scholar 

  19. Duling, B. R., and R. M. Berne. Longitudinal gradients in periarteriolar oxygen tension: A possible mechanism for the participation of oxygen in local regulation of blood flow. Circ. Res.27:669-678, 1970.

    Google Scholar 

  20. Ellermann, J., M. Garwood, K. Hendrich, R. Hinke, X. Hu, S. G. Kim, R. Menon, H. Merkle, S. Ogawa, and K. Ugurbil. Functional imaging of the brain by nuclear magnetic resonance. In: NMR in Physiology and Biomedicine. New York, NY: Academic, 1994, pp. 137–150.

  21. Ellsworth, M. L., and R. N. Pittman. Arterioles supply oxygen to capillaries by diffusion as well as by convection. Am. J. Physiol. Heart Circ. Physiol.258:H1240-H1243, 1990.

    Google Scholar 

  22. Goresky, C. A.A linear method for determining liver sinusoidal and extravascular volumes. Am. J. Physiol.204:626-640, 1963.

    Google Scholar 

  23. Goresky, C. A., R. F. P. Cronin, and B. E. Wangel. Indicator dilution measurements of extravascular water in the lungs. J. Clin. Invest.48:487-501, 1969.

    Google Scholar 

  24. Goresky, C. A., J. W. Warnica, J. H. Burgess, and B. E. Nadeau. Effect of exercise on dilution estimates of extravascular lung water and on the carbon monoxide diffusing capacity in normal adults. Circ. Res.37:379-389, 1975.

    Google Scholar 

  25. Kassab, G., and Y. B. Fung. Topology and dimensions of the pig coronary capillary network. Am. J. Physiol. Heart Circ. Physiol.267:H319-H325, 1994.

    Google Scholar 

  26. King, R. B., G. M. Raymond, and J. B. Bassingthwaighte. Modeling blood flow heterogeneity. Ann. Biomed. Eng.24:352-372, 1996.

    Google Scholar 

  27. Knopp, T. J., W. A. Dobbs, J. F. Greenleaf, and J. B. Bassingthwaighte. Transcoronary intravascular transport functions obtained via a stable deconvolution technique. Ann. Biomed. Eng.4:44-59, 1976.

    Google Scholar 

  28. Leveque, R. J. In: Numerical Methods for Conservation Laws. Boston, MA: Birkhauser, 1992.

  29. Li, Z., T. Yipintsoi, and J. B. Bassingthwaighte. Nonlinear model for capillary–tissue oxygen transport and metabolism. Ann. Biomed. Eng.25:604-619, 1997.

    Google Scholar 

  30. Linehan, J. H., T. A. Bronikowski, D. A. Rickaby, and C. A. Dawson. Hydrolysis of a synthetic angiotensin-converting enzyme substrate in dog lungs. Am. J. Physiol. Heart Circ. Physiol.257:H2006-H2016, 1989.

    Google Scholar 

  31. Ogawa, S., R. S. Menon, D. W. Tank, S. G. Kim, H. Merkle, J. M. Ellermann, and K. Ugurbil. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys. J.64:803-812, 1993.

    Google Scholar 

  32. Overholser, K. A., and T. R. Harris. Effect of exogenous adenosine on resistance, capillary permeability–surface area and flow in ischemic canine myocardium. J. Pharmacol. Exp. Ther.229:148-153, 1984.

    Google Scholar 

  33. Paaske, W. P.and P. Sejrsen. Microvascular function in peripheral vascular bed during ischaemia and oxygen-free perfusion. Eur. J. Vasc. Endovasc. Surg.9:29-37, 1995.

    Google Scholar 

  34. Pekar, J., L. Ligeti, Z. Ruttner, R. C. Lyon, T. M. Sinnwell, P. van Gelderen, D. Fiat, C. T. Moonen, and A. C. McLaughlin. In vivo measurement of cerebral oxygen consumption and blood flow using 17O magnetic resonance imaging. Magn. Reson. Med.21:313-319, 1991.

    Google Scholar 

  35. Popel, A. S., R. N. Pittman, and M. L. Ellsworth. Rate of oxygen loss from arterioles is an order of magnitude higher than expected. Am. J. Physiol. Heart Circ. Physiol.256:H921-H924, 1989.

    Google Scholar 

  36. Poulain, C. A., B. A. Finlayson, and J. B. Bassingthwaighte. Efficient numerical methods for nonlinear facilitated transport and exchange in a blood–tissue exchange unit. Ann. Biomed. Eng.25:547-564, 1997.

    Google Scholar 

  37. Renkin, E. M.Exchangeability of tissue potassium in skeletal muscle. Am. J. Physiol.197:1211-1215, 1959.

    Google Scholar 

  38. Renkin, E. M.Cellular aspects of transvascular exchange: A 40-year perspective. Microcirculation (Philadelphia)1:157-167, 1994.

    Google Scholar 

  39. Rose, C. P., C. A. Goresky, and G. G. Bach. The capillary and sarcolemmal barriers in the heart: An exploration of labeled water permeability. Circ. Res.41:515-533, 1977.

    Google Scholar 

  40. Sangren, W. C., and C. W. Sheppard. A mathematical derivation of the exchange of a labeled substance between a liquid flowing in a vessel and an external compartment. Bull. Math. Biophys.15:387-394, 1953.

    Google Scholar 

  41. Secomb, T. W., and R. Hsu. Analysis of oxygen delivery to tissue by microvascular networks. Adv. Exp. Med. Biol.222:95-105, 1988.

    Google Scholar 

  42. Secomb, T. W., and R. Hsu. Simulation of O2 transport in skeletal muscle: Diffusive exchange between arterioles and capillaries. Am. J. Physiol. Heart Circ. Physiol.267:H1214-H1221, 1994.

    Google Scholar 

  43. St. Pierre, M. V., A. J. Schwab, C. A. Goresky, W. F. Lee, and K. S. Pang. The multiple indicator dilution technique for characterization of normal and retrograde flow in once-through rat liver perfusions. Hepatology9:285-296, 1989.

    Google Scholar 

  44. Strang, G. S. In: Introduction to Applied Mathematics. Wellesley, MA: Wellesley–Cambridge, 1986.

  45. Sweiry, J. H., and G. E. Mann. Pancreatic microvascular permeability in caerulein-induced acute pancreatitis. Am. J. Physiol.261:G685-G692, 1991.

    Google Scholar 

  46. Van der Ploeg, C. P. B., J. Dankelman, and J. A. E. Spaan. Classical Krogh model does not apply well to coronary oxygen exchange. In: Oxygen Transport to Tissue XV, edited by P. Z. Vaupel, R. Zander, and D. F. Bruley. New York, NY: Plenum, 1994, pp. 299–304.

  47. Wangler, R. D., M. W. Gorman, C. Y. Wang, D. F. DeWitt, I. S. Chan, J. B. Bassingthwaighte, and H. V. Sparks. Transcapillary adenosine transport and interstitial adenosine concentration in guinea pig hearts. Am. J. Physiol. Heart Circ. Physiol.257:H89-H106, 1989.

    Google Scholar 

  48. Wieringa, P. A., H. G. Stassen, J. J. I. M. van Kan, and J. A. E. Spaan. Oxygen diffusion in a network model of the myocardial microcirculation. Int. J. Microcirc.: Clin. Exp.13:137-169, 1993.

    Google Scholar 

  49. Yipintsoi, T., and J. B. Bassingthwaighte. Circulatory transport of iodoantipyrine and water in the isolated dog heart. Circ. Res.27:461-477, 1970.

    Google Scholar 

  50. Zuurbier, C. J., T. Yipintsoi, Z. Li, A. Deussen, and J. B. Bassingthwaighte. High diffusional water conductance obtained by modeling water transport in the heart using a distributive model. Ann. Biomed. Eng.24:S44, 1996.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beard, D.A., Bassingthwaighte, J.B. Advection and Diffusion of Substances in Biological Tissues With Complex Vascular Networks. Annals of Biomedical Engineering 28, 253–268 (2000). https://doi.org/10.1114/1.273

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.273

Navigation