Skip to main content
Log in

A Functional Comparison of Animal Anterior Cruciate Ligament Models to the Human Anterior Cruciate Ligament

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Many investigators have used animal models to clarify the role of the human anterior cruciate ligament (ACL). Because none of these models are anatomically and biomechanically identical to the human ACL, there exists a need for an objective comparison of these models. To do this, we used a universal force-moment sensor to measure and compare the in situ forces, including magnitude and direction, of the ACL and the anteromedial (AM) and posterolateral (PL) bundles of human, pig, goat, and sheep knees. An Instron was used to apply 50 and 100 N anterior tibial loads at 90° of knee flexion, while a universal force-moment sensor was used to measure the forces applied by the ACL to the tibia, the in situ force of the ACL. We found significant differences between the magnitude of force experienced by the goat and sheep ACL and AM and PL bundles when compared with the human ACL and AM and PL bundles. Also, the direction of the in situ force in the ACL and AM bundles of the goat and sheep were different from the human. The pig knee differed from the human only in the magnitude and direction of the in situ force in the PL bundle in response under anterior tibial loading. A tally of the significant differences between the animal models and the human knees indicates that goat and sheep knees may have limitations in modeling the human ACL, while the pig knee may be the preferred model for experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Arnoczky, S. P., and J. L. Marshall. The cruciate ligaments of the canine stifle: An anatomical and functional analysis. Am. J. Vet. Res.38:1807-1814, 1977.

    Google Scholar 

  2. Ballock, R. T., S. L-Y. Woo, R. M. Lyon, J. M. Hollis, and W. H. Akeson. Use of patellar tendon autograft for anterior cruciate ligament reconstruction in the rabbit-A long term histological and biomechanical study. J. Orthop. Res.7:474- 485, 1989.

    Google Scholar 

  3. Barry, D., and A. M. Ahmed. Design and performance of a modified buckle transducer for the measurement of ligament tension. J. Biomech. Eng.108:149-152, 1986.

    Google Scholar 

  4. Berman, A. C. The goat model for prosthetic anterior cruciate ligament reconstruction. Trans. Soc. Biom.12:230, 1989.

    Google Scholar 

  5. Brandt, K. D., E. M. Braunstein, D. M. Visco, B. O'Connor, D. Heck, and M. Albrecht. Anterior (cranial) cruciate ligament transection in the dog: A bona fide model of osteoarthritis, not merely of cartilage injury and repair. J. Rheumatol.18:436-446, 1991.

    Google Scholar 

  6. Clancy, W. G. J., R. G. Narechania, T. D. Rosenberg, J. G. Gmeiner, D. D. Wisnefske, and T. A. Lange. Anterior and posterior cruciate ligament reconstruction in Rhesus monkeys: A histological, microangiographic, and biomechanical analysis. J. Bone Jt. Surg., Am. Vol.63(8):1270-1284, 1981.

    Google Scholar 

  7. Danychuck, K. D., J. B. Finlay, and J. P. Krcek. Microstructural organization of human and bovine cruciate ligament. Clin. Orthop. Rel. Res.131:294-298, 1978.

    Google Scholar 

  8. France, P. E., A. U. Daniels, M. E. Goble, and H. K. Dunn. Simultaneous quantitation of knee ligament force. J. Biomech.16:553-564, 1983.

    Google Scholar 

  9. Fujie, H., G. A. Livesay, S. Kashiwaguchi, G. Blomstrom, and S. L-Y. Woo. Determination of in situ force in the human anterior cruciate ligament: A new methodology. BED-22.22:91-94, 1992.

    Google Scholar 

  10. Fujie, H., G. A. Livesay, S. L-Y. Woo, S. Kashiwaguchi, and G. Blomstrom. The use of a universal force-moment sensor to determine in situ forces in ligaments: A new methodology. J. Biomech. Eng.117:1-7, 1995.

    Google Scholar 

  11. Fujie, H., K. Mabuchi, S. L-Y. Woo, G. A. Livesay, S. Arai, and Y. Tsukamoto. The use of robotics technology to study human joint kinematics: A new methodology. J. Biomech. Eng.115:211-217, 1993.

    Google Scholar 

  12. Fuss, F. K. Anatomy and function of the cruciate ligaments of the domestic pig: A comparison with human cruciates. J. Anat.178:11-20, 1991.

    Google Scholar 

  13. Guan, Y., D. L. Butler, S. G. Dormer, S. M. Feder, and M. Mayhan. Anterior cruciate subunit response during anterior drawer. In: ASME Biomechanics Symposium, Columbus, OH, 1991, pp. 201-204.

  14. Gupta, B. N., K. N. Subramanian, W. O. Brinker, and A. N. Gupta. Tensile strength of canine cranial cruciate ligaments. Am. J. Vet. Res.32:183-190, 1971.

    Google Scholar 

  15. Holden, J. P., E. S. Grood, and J. F. Cummings. The effects of flexion angle and tibial rotation on measurement of anteromedial band force in the goat ACL. Trans. Orthop. Res. Soc.16:588, 1991.

    Google Scholar 

  16. Holden, J. P., E. S. Grood, D. L. Korvick, J. F. Cummings, D. L. Butler, and D. I. Bylski-Austrow. In vivoforces in the anterior cruciate ligament: Direct measurements during walking and trotting in a quadruped. J. Biomech.27:517-526, 1994.

    Google Scholar 

  17. Hollis, J. M. Development and application of a method for determining the in situ forces in anterior cruciate ligament bundles. Thesis, University of California, San Diego, 1988.

  18. Hollis, M. J., J. P. Marcin, S. Horibe, and S. L-Y. Woo. Load determination in ACL fiber bundles under knee loading. Trans ORS13:58, 1988.

    Google Scholar 

  19. Hollis, M. J., S. Takai, D. J. Adams, S. Horibe, and S. L-Y. Woo. The effects of knee motion and external loading on the length of the anterior cruciate ligament: A kinematic study. J. Biomech. Eng.113:208-214, 1991.

    Google Scholar 

  20. Jasty, M., W. D. Lew, and J. L. Lewis. In vitro ligament forces in the normal knee using buckle transducers. Trans. Orthop. Res. Soc.7:241, 1982.

    Google Scholar 

  21. Johnson, R. A., and D. W. Wichern. Comparison of several multivariate means. In: Applied Multivariate Statistical Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1988, pp. 210-272.

    Google Scholar 

  22. Korvick, D. L., G. J. Pijanowski, and D. J. Schaeffer. Three dimensional kinematics of the intact and cranial cruciate ligament-deficient stifle dog. J. Biomech.27:1, 77-87, 1993.

    Google Scholar 

  23. Lewis, J. L., M. Jasty, M. Schafer, and R. Wixson. Functional load directions for the two bands of the anterior cruciate ligament. Trans. Orthop. Res. Soc.5:307, 1980.

    Google Scholar 

  24. Lewis, J. L., W. D. Lew, J. A. Hill, K. J. Ohland, S. Kirkstukas, and R. E. Hunter. Knee joint motion and ligamental forces before and after ACL reconstruction. J. Biomech. Eng.111:97-106, 1989.

    Google Scholar 

  25. Lewis, J. L., W. D. Lew, and J. Schmidt. A note on the application and evaluation of the buckle transducer for knee ligament force measurement. J. Biomech. Eng.104:125-128, 1982.

    Google Scholar 

  26. Lewis, J. L., W. D. Lew, and J. Schmidt. Description and error evaluation of an in vitro knee joint testing system. J. Biomech. Eng.110:238-248, 1988.

    Google Scholar 

  27. Livesay, G. A., H. Fujie, S. Kashiwaguchi, D. A. Morrow, F. H. Fu, and S. L-Y. Woo. Determination of the in situ forces and force distribution within the human anterior cruciate ligament. Ann. Biomed. Eng.23:467-474, 1995.

    Google Scholar 

  28. Mendenhall, H. V. The goat as an animal model for anterior cruciate ligament research. In: Proceedings of the 2nd Annual Science Session of the Academy of Surgery Residence, 1986.

  29. O'Donoghue, D. H., and C. C. Rockwod. Repair of the anterior cruciate ligament in dogs. J. Bone Jt. Surg., Am. Vol.48:503-519, 1966.

    Google Scholar 

  30. Oster, D. M., E. S. Grood, S. M. Feder, D. L. Butler, and M. S. Levy. Primary and coupled motions in the intact and the ACL deficient knee: an in vitro study in the goat model. J. Orthop. Res.10:476-484, 1992.

    Google Scholar 

  31. Parsons, F. The joints of mammals compared with those of man. Part II. Joints of the hind limb. J. Anat. Physiol.34:301-323, 1900.

    Google Scholar 

  32. Powers, D. L., P. A. Jacob, and M. J. Drews. Anatomical reconstruction of the anterior cruciate ligament in goats. J. Invest. Surg.4:191-202, 1991.

    Google Scholar 

  33. Shino, K., T. Kawasaki, H. Hirose, I. Gotoh, M. Inoue, and R. Ono. Reconstruction of the anterior cruciate ligament by allogenic tendon graft: An experimental study in the dog. J. Bone Jt. Surg., Brit. Vol.66:672-681, 1984.

    Google Scholar 

  34. Takai, S., G. A. Livesay, S. L-Y. Woo, D. J. Adams, and F. H. Fu. Determination of the in situ loads on the human anterior cruciate ligament. J. Orthop. Res.11:686-695, 1993.

    Google Scholar 

  35. Vilensky, J. A., B. L. O'Connor, K. D. Brandt, E. A. Dunn, P. I. Rogers, and C. A. DeLong. Serial kinematic analysis of the unstable knee after transection of the anterior cruciate ligament: Temporal and angular changes in a canine model of osteoarthritis. J. Orthop. Res.12:229-237, 1994.

    Google Scholar 

  36. Wascher, D. C., K. L. Markolf, M. S. Shapiro, and G. A. M. Finerman. Direct in vitro measurement of the forces in cruciate ligaments. Part I: The effect of multiplane loading of the intact knee. J. Bone Jt. Surg., Am. Vol.75:377-386, 1988.

    Google Scholar 

  37. Xerogeanes, J. W., Y. Takeda, G. A. Livesay, Y. Ishibashi, H. S. Kim, F. H. Fu, and S. L-Y. Woo. Effect of knee flexion on the in situ force distribution in the human anterior cruciate ligament. Knee Surg. Sports Traumatol. Arthrosc.3:9-13, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xerogeanes, J.W., Fox, R.J., Takeda, Y. et al. A Functional Comparison of Animal Anterior Cruciate Ligament Models to the Human Anterior Cruciate Ligament. Annals of Biomedical Engineering 26, 345–352 (1998). https://doi.org/10.1114/1.91

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.91

Navigation