Skip to main content
Log in

Noninvasive Measurement of Steady and Pulsating Velocity Profiles and Shear Rates in Arteries Using Echo PIV: In Vitro Validation Studies

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Although accurate measurement of velocity profiles, multiple velocity vectors, and shear stress in arteries is important, there is still no easy method to obtain such information in vivo. We report on the utility of combining ultrasound contrast imaging with particle image velocimetry (PIV) for noninvasive measurement of velocity vectors. This method (echo PIV) takes advantage of the strong backscatter characteristics of small gas-filled microbubbles (contrast) seeded into the flow. The method was tested in vitro. The steady flow analytical solution and optical PIV measurements (for pulsatile flow) were used for comparison. When compared to the analytical solution, both echo PIV and optical PIV resolved the steady velocity profile well. Error in shear rate as measured by echo PIV (8%) was comparable to the error of optical PIV (6.5%). In pulsatile flow, echo PIV velocity profiles agreed well with optical PIV profiles. Echo PIV followed the general profile of pulsatile shear stress across the artery but underestimated wall shear at certain time points. However, error in shear from echo PIV was an order of magnitude less than error from current shear measurement methods. These studies indicate that echo PIV is a promising technique for noninvasive measurement of velocity profiles and shear stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Adrian, R. J. Scattering particle characteristics and their effect on pulsed laser measurements of fluid flow: Speckle velocimetry vs particle image velocimetry. Appl. Opt. 23:1690–1691, 1984.

    Google Scholar 

  2. Adrian, R. J. Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23:261–304.

  3. Behar, V., D. Adam, and Z. Friedman. A new method of spatial compounding imaging. Ultrasonics 41:377–384, 2003.

    Google Scholar 

  4. Bohs, L. N., B. H. Friemel, and G. E. Trahey. Experimental velocity profiles and volumetric flow via two-dimensional speckle tracking. Ultrasound Med. Biol. 21:885–898, 1995.

    Article  Google Scholar 

  5. Bohs, L. N., B. J. Geiman, M. E. Anderson, S. C. Gebhart, and G. E. Trahey. Speckle tracking for multi-dimensional flow estimation. Ultrasonics 38:369–375, 2000.

    Article  Google Scholar 

  6. Cheng, P. P., D. Parker, and C. A. Taylor. Quantification of wall shear stress in large blood vessels using Lagrange interpolation functions with cine phase-contrast magnetic resonance imaging. Ann. Biomed. Eng. 30:1020–1032, 2002.

    Article  Google Scholar 

  7. Dainty, J. C. Laser Speckle and Related Phenomena. New York: Springer-Verlag, 1975.

    Google Scholar 

  8. Doriot, P. A., P. A. Dorsaz, L. Dorsaz, E. Benedetti, P. Chatelain, and P. Delafontaine. In vivomeasurements of wall shear stress in human coronary arteries, Coronary Artery Dis. 11(6):492–502, 2000.

    Google Scholar 

  9. Fatemi, R. S., and S. E. Rittgers. Derivation of shear rates from near-wall LDA measurements under steady and pulsatile flow conditions.J. Biomech. Eng. 116:361–368, 1994.

    Google Scholar 

  10. Friedman, M. H., O. J. Deters, C. B. Bargeron, G. M. Hutchins, and F. F. Mark. Shear-dependent thickening of the human arterial intima. Atherosclerosis 60:161–171, 1986.

    Google Scholar 

  11. Friedman, M. H., and O. J. Deters. Correlation among shear rate measures in vascular flows. J. Biomech. Eng. 109:25–26, 1987.

    Google Scholar 

  12. Gnass, A., C. Carallo, C. Irace, V. Spagnulo, G. DeNovara, P. L. Mattioli, and A. Pujia. Association between intima-media thickness and wall shear stress in common carotid arteries in health male subjects. Circulation 94(12):3257–3262, 1996

    Google Scholar 

  13. He, X., and D. N. Ku. Pulsatile flow in the human left coronary artery bifurcation: Average conditions. J. Biomech. Eng. 118:74–82, 1996.

    Google Scholar 

  14. Jondeau, G., P. Boutouyrie, P. Lacolley, B. Laloux, O. Dubourg, J. Bourdarias, and S. Laurent. Central pulse pressure is a major determinant of ascending aorta dilation in Marfan syndrome, Circulation 99:2677–2681, 1999.

    Google Scholar 

  15. Keynton, R. S., R. E. Nemer, Q. Y. Neifert, R. S. Fatemi, and S. E. Rittgers. Design, fabrication, and in vitroevaluation of an in vivoultrasonic Doppler wall shear stress rate measuring device. IEEE Trans. Biomed. Eng. 42:433–441, 1995.

    Google Scholar 

  16. Kim, H. B., and S. J. Lee. Time-resolved velocity field measurements of separated flow in front of a vertical fence. Exp. Fluids. 31:249–257, 2001.

    Article  Google Scholar 

  17. Kim, H. B., J. Hertzberg, and R. Shandas. Development of echo-PIV and its implementation of the pipe flow. ASME IMECE'02, New Orleans, LA, 2002.

    Google Scholar 

  18. Kim, H. B., J. Hertzberg, and R. Shandas. Development and validation of Echo-PIV. Exp. Fluids 2004. (in press). 1076 KIM et al.

  19. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Atherosclerosis 5:293–302, 1985.

    Article  PubMed  Google Scholar 

  20. Lutz, R. J., J. N. Cannon, K. B. Bischoff, R. L. Dedrick, R. K. Stiles, and D. L. Fry. Wall shear stress distribution on a model canine artery during steady flow. Circ. Res. 41:391–399, 1977.

    Google Scholar 

  21. Mukdadi, O., H. B. Kim, J. R. Hertzberg, and R. Shandas. Numerical modeling of microbubble backscatter to optimize ultrasound particle image velocimetry imaging: Initial studies. Ultrasonics 2004. (in press).

  22. Nerem, R. M. Vascular fluid mechanics, the arterial wall, and atherosclerosis. J. Biomech. Eng. 114:274–282, 1992.

    Google Scholar 

  23. Nerem, R. M., and J. F. Cornhill. The role of fluid mechanics in atherogenesis. J. Biomech. Eng. 102:181–189, 1980.

    Google Scholar 

  24. Nowak, M. Wall shear stress measurement in a turbulent pipe flow using ultrasound Doppler velocimetry. Exp. Fluids 33:249–255, 2002.

    Google Scholar 

  25. Oyre, S., S. Ringgaard, S. Kozerke, W. P. Paaske, M. B. Scheidegger, P. Boesiger, and E. M. Pedersen. Quantitation of circumferential subpixel vessel wall position and wall shear stress by multiple sectored three-dimensional paraboloid modeling of velocity encoded cine MR. Magn. Reson. Med. 40:645–655, 1998.

    Google Scholar 

  26. Pedersen, E. M., H. Sung, and A. P. Yoganathan. Influence of abdominal aortic curvature and resting versus exercise conditions on velocity fields in the normal abdominal aortic bifurcation. J. Biomech. Eng. 114:347–354, 1994.

    Google Scholar 

  27. Pedesen, M. H.,T. X. Misaridis, and J. A. Jensen. Clinical evaluation of chirp-coded excitation in medical ultrasound. Ultrasound Med. Biol. 29:895–905, 2003.

    Article  Google Scholar 

  28. Raffel, M., C. Willert, and J. Kompenhans. Particle Image Velocimetry. Berlin: Springer-Verlag, 1998, 253 pp.

    Google Scholar 

  29. Sandrin, L., S. Manneville, and M. Fink. Ultrafast twodimensional ultrasonic speckle velocimetry:Atool in flowimaging. Appl. Phys. Lett. 78:1155–1157, 2001.

    Article  Google Scholar 

  30. Shattuck, D. P.,M. D. Weinschenker, S.W. Smith, and O. T. von Ramm. Explososcan: A parallel processing technique for high speed ultrasound imaging with linear phased arrays. J. Acoust. Soc. Am. 75:1273–1282, 1984.

    Google Scholar 

  31. Shung, K. K., and R. R. Flenniken. Time domain ultrasonic contrast blood flowmetry. Ultrasound Med. Biol. 21(1):71–78, 1995.

    Article  Google Scholar 

  32. Taylor C. A., C. P. Cheng, L. A. Espinosa, B. T. Tang, D. Parker, and R. J. Herfkens. In vivoquantification of blood flow and wall shear stress in the human abdominal aorta during lower limb exercise. Ann. Biomed. Eng. 30:402–408, 2002.

    Article  Google Scholar 

  33. Trahey, G. E., J.W. Allison, and O. von Ramm. Angle independent ultrasonic detection of blood flow. IEEE Trans. Biomed. Eng. 34:965–967, 1987.

    Google Scholar 

  34. Wunderlich, T., and P. O. Brunn. A wall layer correction for ultrasound measurement in tube flow: Comparison between theory and experiment. Flow Meas. Instrum. 11:63–69, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HB., Hertzberg, J., Lanning, C. et al. Noninvasive Measurement of Steady and Pulsating Velocity Profiles and Shear Rates in Arteries Using Echo PIV: In Vitro Validation Studies. Annals of Biomedical Engineering 32, 1067–1076 (2004). https://doi.org/10.1114/B:ABME.0000036643.45452.6d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/B:ABME.0000036643.45452.6d

Navigation