Skip to main content
Log in

Mechanical Stimulation Toward Tissue Engineering of the Knee Meniscus

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Current clinical practices do not adequately regenerate the meniscus of the knee secondary to a tear. Complete or partial meniscus removal leads to degenerative changes within the joint. Tissue engineering of the meniscus promises a potent solution. Before embarking on tissue engineering of the meniscus, it is crucial to have a thorough comprehension of the biomechanical role that this tissue fulfills and how the structure of meniscus is uniquely suited to that purpose. To better understand this, we have examined the meniscus, as well as associated tissues, within the body. For the first time, the knee meniscus is rigorously compared to ligament, tendon, and cartilage, and inferences are drawn on how mechanical stimulation may be used to channel growth in the meniscus. We have examined in detail the loading conditions that these tissues experience in vivo and how each is uniquely adapted to its loading environment. These tissues are capable of achieving some degree of remodeling because of mechanical stimuli. By understanding the mechanisms that can stimulate and promote regeneration in related tissues, we hope to harness that knowledge to achieve the goal of meniscal regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ahmed, A. M. The load-bearing role of the knee meniscus. In: Knee Meniscus: Basic and Clinical Foundations, edited by V. C. Mow, S. P. Arnoczky, and D. W. Jackson. New York: Raven Press, 1992, pp. 59–73.

    Google Scholar 

  2. Anderson, M. W. MR imaging of the meniscus. Radiol. Clin. North Am. 40:1081–1094, 2002.

    Google Scholar 

  3. Angele, P., J. U. Yoo, C. Smith, J. Mansour, K. J. Jepsen, M. Nerlich, and B. Johnstone. Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J. Orthop. Res. 21:451–457, 2003.

    Article  Google Scholar 

  4. Athanasiou, K. A., A. R. Shah, R. J. Hernandez, and R. G. LeBaron. Basic science of articular cartilage repair. Clin. Sports Med. 20:223–247, 2001.

    Google Scholar 

  5. Bachrach, N. M., V. C. Mow, and F. Guilak. Incompressibility of the solid matrix of articular cartilage under high hydrostatic pressures. J. Biomech. 31:445–451, 1998.

    Article  Google Scholar 

  6. Banes, A. J., M. Tsuzaki, P. Hu, B. Brigman, T. Brown, L. Almekinders, W. T. Lawrence, and T. Fischer. PDGF-BB, IGFI and mechanical load stimulate DNA synthesis in avian tendon fibroblasts in vitro. J. Biomech. 28:1505–1513, 1995.

    Article  Google Scholar 

  7. Benjamin, M., and J. R. Ralphs. Fibrocartilage in tendons and ligaments-An adaptation to compressive load. J. Anat. 193(Pt. 4):481–494, 1998.

    Article  Google Scholar 

  8. Benjamin, M., and J. R. Ralphs. The cell and developmental biology of tendons and ligaments. Int. Rev. Cytol. 196:85–130, 2000. 1172 A. C. AUFDERHEIDE and K. A. ATHANASIOU

    Article  Google Scholar 

  9. Berry, C. C., C. Cacou, D. A. Lee, D. L. Bader, and J. C. Shelton. Dermal fibroblasts respond to mechanical conditioning in a strain profile dependent manner. Biorheology 40:337–345, 2003.

    Google Scholar 

  10. Bonassar, L. J., A. J. Grodzinsky, E. H. Frank, S. G. Davila, N. R. Bhaktav, and S. B. Trippel. The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I.J. Orthop. Res. 19:11–17, 2001.

    Article  Google Scholar 

  11. Buschmann, M. D., Y. A. Gluzband, A. J. Grodzinsky, and E. B. Hunziker. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J. Cell. Sci. 108(Pt. 4):1497–1508, 1995.

    Google Scholar 

  12. Bussolari, S. R., C. F. Dewey Jr., and M. A. Gimbrone Jr. Apparatus for subjecting living cells to fluid shear stress. Rev. Sci. Instrum. 53:1851–1854, 1982.

    Article  Google Scholar 

  13. Carver, S. E., and C. A. Heath. Increasing extracellular matrix production in regenerating cartilage with intermittent physiological pressure. Biotechnol. Bioeng. 62:166–174, 1999.

    Article  Google Scholar 

  14. Carver, S. E., and C. A. Heath. Semi-continuous perfusion system for delivering intermittent physiological pressure to regenerating cartilage. Tissue Eng. 5:1–11, 1999.

    Google Scholar 

  15. Cheung, H. S. Distribution of type I, II, III and V in the pepsin solubilized collagens in bovine menisci. Connect Tissue Res. 16:343–356, 1987.

    Google Scholar 

  16. Copray, J. C., H. W. Jansen, and H. S. Duterloo. Effects of compressive forces on proliferation and matrix synthesis in mandibular condylar cartilage of the rat in vitro. Arch. Oral. Biol. 30:299–304, 1985.

    Article  Google Scholar 

  17. Cox, J. S., C. E. Nye, W. W. Schaefer, and I. J. Woodstein. The degenerative effects of partial and total resection of the medial meniscus in dogs' knees. Clin. Orthop. 109:178–183, 1975.

    Google Scholar 

  18. Darling, E. M., and K. A. Athanasiou. Articular cartilage bioreactors and bioprocesses. Tissue Eng. 9:9–26, 2003.

    Article  Google Scholar 

  19. Davisson, T., R. L. Sah, and A. Ratcliffe. Perfusion increases cell content and matrix synthesis in chondrocyte threedimensional cultures. Tissue Eng. 8:807–816, 2002.

    Article  Google Scholar 

  20. Elder, S. H., J. H. Kimura, L. J. Soslowsky, M. Lavagnino, and S. A. Goldstein. Effect of compressive loading on chondrocyte differentiation in agarose cultures of chick limb-bud cells. J. Orthop. Res. 18:78–86, 2000.

    Google Scholar 

  21. Elliott, D. M., P. S. Robinson, J. A. Gimbel, J. J. Sarver, J. A. Abboud, R. V. Iozzo, and L. J. Soslowsky. Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons. Ann. Biomed. Eng. 31:599–605, 2003.

    Article  Google Scholar 

  22. Evanko, S. P., and K. G. Vogel. Ultrastructure and proteoglycan composition in the developing fibrocartilaginous region of bovine tendon. Matrix 10:420–436, 1990.

    Google Scholar 

  23. Evanko, S. P., and K. G. Vogel. Proteoglycan synthesis in fetal tendon is differentially regulated by cyclic compression in vitro. Arch. Biochem. Biophys. 307:153–164, 1993.

    Article  Google Scholar 

  24. Eyre, D. R., and J. J. Wu. Collagen of fibrocartilage: A distinctive molecular phenotype in bovine meniscus. FEBS Lett. 158:265–270, 1983.

    Article  Google Scholar 

  25. Fithian, D. C., M. A. Kelly, and V. C. Mow. Material properties and structure-function relationships in the menisci. Clin. Orthop. 19–31, 1990.

  26. Fithian, D. C., M. B. Schmidt, A. Ratcliffe, and V. C. Mow. Human meniscus tensile properties: Regional variation and biochemical correlation. Trans. Orthop. Res. Soc. 14:205, 1989.

    Google Scholar 

  27. Frank, E. H., M. Jin, A. M. Loening, M. E. Levenston, and A. J. Grodzinsky. A versatile shear and compression apparatus for mechanical stimulation of tissue culture explants. J. Biomech. 33:1523–1527, 2000.

    Article  Google Scholar 

  28. Fu, F. H., and W. O. Thompson. Chapter 9: Biomechanics and kinematics of meniscus. In: Biology and Biomechanics of the Trumatized Synovial Joint: The Knee as a Model, edited by G. A. M. Finerman and F. R. Noyes. Rosemont: American Academy of Orthopaedic Surgeons, 1992, pp. 153–183.

    Google Scholar 

  29. Ghadially, F. N., J. M. Lalonde, and J. H. Wedge. Ultrastructure of normal and torn menisci of the human knee joint. J. Anat. 136:773–791, 1983.

    Google Scholar 

  30. Ghadially, F. N., I. Thomas, N. Yong, and J. M. Lalonde. Ultrastructure of rabbit semilunar cartilages. J. Anat. 125:499–517, 1978.

    Google Scholar 

  31. Goodwin, T. J., T. L. Prewett, D. A. Wolf, and G. F. Spaulding. Reduced shear stress: A major component in the ability of mammalian tissues to form three-dimensional assemblies in simulated microgravity. J. Cell. Biochem. 51:301–311, 1993.

    Google Scholar 

  32. Grodzinsky, A. J., M. E. Levenston, M. Jin, and E. H. Frank. Cartilage tissue remodeling in response to mechanical forces. Annu. Rev. Biomed. Eng. 2:691–713, 2000.

    Article  Google Scholar 

  33. Gronblad, M., O. Korkala, P. Liesi, and E. Karaharju. Innervation of synovial membrane and meniscus. Acta Orthop. Scand. 56:484–486, 1985.

    Google Scholar 

  34. Hall, A. C., J. P. Urban, and K. A. Gehl. The effects of hydrostatic pressure on matrix synthesis in articular cartilage. J. Orthop. Res. 9:1–10, 1991.

    Google Scholar 

  35. Hansen, U., M. Schunke, C. Domm, N. Ioannidis, J. Hassenpflug, T. Gehrke, and B. Kurz. Combination of reduced oxygen tension and intermittent hydrostatic pressure: A useful tool in articular cartilage tissue engineering. J. Biomech. 34:941–949, 2001.

    Article  Google Scholar 

  36. Hellio Le Graverand, M. P., Y. Ou, T. Schield-Yee, L. Barclay, D. Hart, T. Natsume, and J. B. Rattner. The cells of the rabbit meniscus: Their arrangement, interrelationship, morphological variations and cytoarchitecture. J. Anat. 198:525–535, 2001.

    Article  Google Scholar 

  37. Herwig, J., E. Egner, and E. Buddecke. Chemical changes of human knee joint menisci in various stages of degeneration. Ann. Rheum. Dis. 43:635–640, 1984.

    Google Scholar 

  38. Hodge, W. A., R. S. Fijan, K. L. Carlson, R. G. Burgess, W. H. Harris, and R. W. Mann. Contact pressures in the human hip joint measured in vivo. Proc. Natl. Acad. Sci. U.S.A. 83:2879–2883, 1986.

    Google Scholar 

  39. Hsieh, A. H., R. L. Sah, K. L. Paul Sung, and U.o.C.S.D.L.J.U.S.A. Department of Bioengineering. Biomechanical regulation of type I collagen gene expression in ACLs in organ culture. J. Orthop. Res. (Official Publication of the Orthopaedic Research Society) 20(2):325–331, 2002.

    Article  Google Scholar 

  40. Hu, J. C. Y., and K. Athanasiou. Chapter 4: Structure and function of articular cartilage. In: Handbook of Histology Methods for Bone and Cartilage, edited by Y. H. An and K. L. Martin. Totowa, NJ: Humana Press, 2003, pp. xviii, 587.

    Google Scholar 

  41. Hunter, C. J., S. M. Imler, P. Malaviya, R. M. Nerem, and M. E. Levenston. Mechanical compression alters gene expression and extracellular matrix synthesis by chondrocytes cultured in collagen I gels. Biomaterials 23:1249–1259, 2002.

    Article  Google Scholar 

  42. Iozzo, R. V. Matrix proteoglycans: From molecular design to cellular function. Annu. Rev. Biochem. 67:609–652, 1998.

    Article  Google Scholar 

  43. Jin, G., R. L. Sah, Y. S. Li, M. Lotz, J. Y. Shyy, and S. Chien. Biomechanical regulation of matrix metalloproteinase-9 in cultured chondrocytes. J. Orthop. Res. 18:899–908, 2000.

    Google Scholar 

  44. Jin, M., G. R. Emkey, P. Siparsky, S. B. Trippel, and A. J. Grodzinsky. Combined effects of dynamic tissue shear deformation and insulin-like growth factor I on chondrocyte biosynthesis in cartilage explants. Arch. Biochem. Biophys. 414:223–231, 2003. Mechanical Stimulation toward Tissue Engineering of the Knee Meniscus 1173

    Article  Google Scholar 

  45. Jin, M., E. H. Frank, T. M. Quinn, E. B. Hunziker, and A. J. Grodzinsky. Tissue shear deformation stimulates proteoglycan and protein biosynthesis in bovine cartilage explants. Arch. Biochem. Biophys. 395:41–48, 2001.

    Article  Google Scholar 

  46. Józsa, L. G., and P. Kannus. Human Tendons: Anatomy, Physiology, and Pathology. Champaign, IL: Human Kinetics, 1997, pp. ix, 574

    Google Scholar 

  47. Kavanagh, E., D. E. Ashhurst, and S.G.s.H.M.S.T.L.U.K. Department of Anatomy. Distribution of biglycan and decorin in collateral and cruciate ligaments and menisci of the rabbit knee joint. J. Histochem. Cytochem. (Official Journal of the Histochemistry Society) 49(7):877–885, 2001.

    Google Scholar 

  48. Kessler, D., S. Dethlefsen, I. Haase, M. Plomann, F. Hirche, T. Krieg, and B. Eckes. Fibroblasts in mechanically stressed collagen lattices assume a "synthetic" phenotype. J. Biol. Chem. 276:36575–36585, 2001.

    Article  Google Scholar 

  49. Kim, S. G., T. Akaike, T. Sasagaw, Y. Atomi, and H. Kurosawa. Gene expression of type I and type III collagen by mechanical stretch in anterior cruciate ligament cells. Cell Struct. Funct. 27:139–144, 2002.

    Article  Google Scholar 

  50. Koob, T. J., P. E. Clark, D. J. Hernandez, F. A. Thurmond, and K. G. Vogel. Compression loading in vitroregulates proteoglycan synthesis by tendon fibrocartilage. Arch. Biochem. Biophys. 298:303–312, 1992.

    Google Scholar 

  51. Koski, J. A., C. Ibarra, S. A. Rodeo, and R. F. Warren. Meniscal injury and repair: Clinical status. Orthop. Clin. North. Am. 31:419–436, 2000.

    Google Scholar 

  52. Krause, W. R., M. H. Pope, R. J. Johnson, and D. G. Wilder. Mechanical changes in the knee after meniscectomy. J. Bone Joint Surg. Am. 58:599–604, 1976.

    Google Scholar 

  53. Kusayama, T., C. D. Harner, G. J. Carlin, J.W. Xerogeanes, and B. A. Smith. Anatomical and biomechanical characteristics of human meniscofemoral ligaments. Knee Surg Sports Traumatol. Arthrosc. 2:234–237, 1994.

    Google Scholar 

  54. Larsson, T., R. M. Aspden, and D. Heinegard. Effects of mechanical load on cartilage matrix biosynthesis in vitro. Matrix 11:388–394, 1991.

    Google Scholar 

  55. Lee, D. A., and D. L. Bader. Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J. Orthop. Res. 15:181–188, 1997.

    Article  Google Scholar 

  56. Lee, D. A., T. Noguchi, S. P. Frean, P. Lees, and D. L. Bader. The influence of mechanical loading on isolated chondrocytes seeded in agarose constructs. Biorheology 37:149–161, 2000.

    Google Scholar 

  57. Li, K.W., A.K. Williamson, A. S. Wang, and R. L. Sah. Growth responses of cartilage to static and dynamic compression. Clin. Orthop. S34–S48, 2001.

  58. Majima, T., L. L. Marchuk, P. Sciore, N. G. Shrive, C. B. Frank, and D. A. Hart. Compressive compared with tensile loading of medial collateral ligament scar in vitrouniquely influences mRNA levels for aggrecan, collagen type II, and collagenase. J. Orthop. Res. 18:524–531, 2000.

    Google Scholar 

  59. Malaviya, P., D. L. Butler, G. P. Boivin, F. N. Smith, F. P. Barry, J. M. Murphy, and K. G. Vogel. An in vivomodel for loadmodulated remodeling in the rabbit flexor tendon. J. Orthop. Res. 18:116–125, 2000.

    Google Scholar 

  60. Martin, J. A., D. Mehr, P. D. Pardubsky, and J. A. Buckwalter. The role of tenascin-C in adaptation of tendons to compressive loading. Biorheology 40:321–329, 2003.

    Google Scholar 

  61. Mauck, R. L., M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C.T. Hung, and G. A. Ateshian. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122:252–260, 2000.

    Article  Google Scholar 

  62. McDevitt, C. A., and R. J. Webber. The ultrastructure and biochemistry of meniscal cartilage. Clin. Orthop. 8–18, 1990.

  63. McNeilly, C. M., A. J. Banes, M. Benjamin, and J. R. Ralphs. Tendon cells in vivoform a three dimensional network of cell processes linked by gap junctions. J. Anat. 189(Pt. 3):593–600, 1996.

    Google Scholar 

  64. Milz, S., C. McNeilly, R. Putz, J. R. Ralphs, and M. Benjamin. Fibrocartilages in the extensor tendons of the interphalangeal joints of human toes. Anat. Rec. 252:264–270, 1998.

    Article  Google Scholar 

  65. Mine, T., M. Kimura, A. Sakka, and S. Kawai. Innervation of nociceptors in the menisci of the knee joint: An immunohistochemical study. Arch. Orthop. Trauma Surg. 120:201–204, 2000.

    Article  Google Scholar 

  66. Mow, V. C., A. Ratcliffe, K.Y. Chern, and M. A. Kelly. Structure and function relationships of the menisci of the knee. In: Knee Meniscus: Basic and Clinical Foundations, edited by V. C. Mow, S. P. Arnoczky, and D. W. Jackson. New York: Raven Press, 1992, pp. 37–57

    Google Scholar 

  67. Nabeshima, Y., E. S. Grood, A. Sakurai, and J. H. Herman. Uniaxial tension inhibits tendon collagen degradation by collagenase in vitro. J. Orthop. Res. 14:123–130, 1996.

    Google Scholar 

  68. Nakamura, N., D. A. Hart, R. S. Boorman, Y. Kaneda, N. G. Shrive, L. L. Marchuk, K. Shino, T. Ochi, and C. B. Frank. Decorin antisense gene therapy improves functional healing of early rabbit ligament scar with enhanced collagen fibrillogenesis in vivo. J. Orthop. Res. 18:517–523, 2000.

    Google Scholar 

  69. Nakano, T., C. M. Dodd, and P. G. Scott. Glycosaminoglycans and proteoglycans from different zones of the porcine knee meniscus. J. Orthop. Res. 15:213–220, 1997.

    Google Scholar 

  70. Parkkinen, J. J., J. Ikonen, M. J. Lammi, J. Laakkonen, M. Tammi, and H. J. Helminen. Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants. Arch. Biochem. Biophys. 300:458–465, 1993.

    Article  Google Scholar 

  71. Pazzano, D., K. A. Mercier, J. M. Moran, S. S. Fong, D. D. DiBiasio, J. X. Rulfs, S. S. Kohles, and L. J. Bonassar. Comparison of chondrogensis in static and perfused bioreactor culture. Biotechnol. Prog. 16:893–896, 2000.

    Article  Google Scholar 

  72. Petersen,W., and B. Tillmann. Collagenous fibril texture of the human knee joint menisci. Anat. Embryol. (Berl.) 197:317–324, 1998.

    Article  Google Scholar 

  73. Proctor, C. S., M. B. Schmidt, R. R. Whipple, M. A. Kelly, and V. C. Mow. Material properties of the normal medial bovine meniscus. J. Orthop. Res. 7:771–782, 1989.

    Google Scholar 

  74. Radin, E. L., F. de Lamotte, and P. Maquet. Role of the menisci in the distribution of stress in the knee. Clin. Orthop. 290–294, 1984.

  75. Ragan, P. M., A. M. Badger, M. Cook, V. I. Chin, M. Gowen, A. J. Grodzinsky, and M. W. Lark. Down-regulation of chondrocyte aggrecan and type-II collagen gene expression correlates with increases in static compression magnitude and duration. J. Orthop. Res. 17:836–842, 1999.

    Google Scholar 

  76. Renstrom, P., and R. J. Johnson. Overuse injuries in sports. A review. Sports Med. 2:316–333, 1985.

    Google Scholar 

  77. Robbins, J. R., S. P. Evanko, and K. G. Vogel. Mechanical loading and TGF-beta regulate proteoglycan synthesis in tendon. Arch. Biochem. Biophys. 342:203–211, 1997.

    Article  Google Scholar 

  78. Roughley, P. J., and E. R. Lee. Cartilage proteoglycans: Structure and potential functions. Microsc. Res. Tech. 28:385–397, 1994.

    Google Scholar 

  79. Sah, R. L.,Y. J. Kim, J.Y. Doong, A. J. Grodzinsky, A. H. Plaas, and J. D. Sandy. Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7:619–636, 1989.

    Google Scholar 

  80. Sauerland, K., R. X. Raiss, and J. Steinmeyer. Proteoglycan metabolism and viability of articular cartilage explants as modulated by the frequency of intermittent loading. Osteoarthritis Cartilage 11:343–350, 2003. 1174 A. C. AUFDERHEIDE and K. A. ATHANASIOU

    Article  Google Scholar 

  81. Scott, C. C., and K. A. Athanasiou. Shear and chondrocytes. In: Biomedical Technology & Devices Handbook, edited by J. M. a. G. Zouridakis. Boca Raton, FL: CRC Press, 2003.

    Google Scholar 

  82. Scott, P. G., T. Nakano, and C. M. Dodd. Isolation and characterization of small proteoglycans from different zones of the porcine knee meniscus. Biochim. Biophys. Acta 1336:254–262, 1997.

    Article  Google Scholar 

  83. Shieh, A. C., and K. A. Athanasiou. Biomechanics of single chondrocytes and osteoarthritis. Crit. Rev. Biomed. Eng. 30:307–343, 2002.

    Google Scholar 

  84. Shieh, A. C., and K. A. Athanasiou. Principles of cell mechanics for cartilage tissue engineering. Ann. Biomed. Eng. 31:1–11, 2003.

    Article  Google Scholar 

  85. Skutek, M., M. van Griensven, J. Zeichen, N. Brauer, and U. Bosch. Cyclic mechanical stretching modulates secretion pattern of growth factors in human tendon fibroblasts. Eur. J. Appl. Physiol. 86:48–52, 2001.

    Google Scholar 

  86. Smith, R. L., B. S. Donlon, M. K. Gupta, M. Mohtai, P. Das, D. R. Carter, J. Cooke, G. Gibbons, N. Hutchinson, and D. J. Schurman. Effects of fluid-induced shear on articular chondrocyte morphology and metabolism in vitro. J. Orthop. Res. 13:824–831, 1995.

    Google Scholar 

  87. Smith, R. L., J. Lin, M. C. Trindade, J. Shida, G. Kajiyama, T. Vu, A. R. Hoffman, M. C. van der Meulen, S. B. Goodman, D. J. Schurman, and D. R. Carter. Time-dependent effects of intermittent hydrostatic pressure on articular chondrocyte type II collagen and aggrecan mRNA expression. J. Rehabil. Res. Dev. 37:153–161, 2000.

    Google Scholar 

  88. Smith, R. L., S. F. Rusk, B. E. Ellison, P. Wessells, K. Tsuchiya, D. R. Carter, W. E. Caler, L. J. Sandell, and D. J. Schurman. In vitrostimulation of articular chondrocyte mRNA and extracellular matrix synthesis by hydrostatic pressure. J. Orthop. Res. 14:53–60, 1996.

    Google Scholar 

  89. Staubli, H. U., L. Schatzmann, P. Brunner, L. Rincon, and L. P. Nolte. Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults. Am. J. Sports. Med. 27:27–34, 1999.

    Google Scholar 

  90. Sweigart, M. A., and K. A. Athanasiou. Toward tissue engineering of the knee meniscus. Tissue Eng.7:111–129, 2001.

    Article  Google Scholar 

  91. Sweigart, M. A., A. C. AufderHeide, and K. A. Athanasiou. Fibrochondrocytes and their use in tissue engineering of the meniscus. In: Topics in Tissue Engineering 2003, edited by N. Ahammakhi and P. Ferretti. 2003.

  92. Tanaka, H., P. R. Manske, D. L. Pruitt, and B. J. Larson. Effect of cyclic tension on lacerated flexor tendons in vitro. J. Hand. Surg. [Am.] 20:467–473, 1995.

    Google Scholar 

  93. Thompson, W. O., F. L. Thaete, F. H. Fu, and S. F. Dye. Tibial meniscal dynamics using three-dimensional reconstruction of magnetic resonance images. Am. J. Sports Med. 19:210–215; Discussion, 215-216, 1991.

    Google Scholar 

  94. Tissakht, M., and A. M. Ahmed. Tensile stress-strain characteristics of the human meniscal material. J. Biomech. 28:411–422, 1995.

    Article  Google Scholar 

  95. Torzilli, P. A., R. Grigiene, C. Huang, S. M. Friedman, S. B. Doty, A. L. Boskey, and G. Lust. Characterization of cartilage metabolic response to static and dynamic stress using a mechanical explant test system. J. Biomech. 30:1–9, 1997.

    Article  Google Scholar 

  96. van de Lest, C. H., B. M. van den Hoogen, and P. R. van Weeren. Loading-induced changes in synovial fluid affect cartilage metabolism. Biorheology 37:45–55, 2000.

    Google Scholar 

  97. van der Meulen, M. C., and R. Huiskes. Why mechanobiology? A survey article. J. Biomech. 35:401–414, 2002.

    Article  Google Scholar 

  98. Vogel, K. G., and D. Heinegard. Characterization of proteoglycans from adult bovine tendon. J. Biol. Chem. 260:9298–9306, 1985.

    Google Scholar 

  99. Vogel, K. G., and T. J. Koob. Structural specialization in tendons under compression. Int. Rev. Cytol. 115:267–293, 1989.

    Google Scholar 

  100. Vogel, K. G., A. Ordog, G. Pogany, and J. Olah. Proteoglycans in the compressed region of human tibialis posterior tendon and in ligaments. J. Orthop. Res. 11:68–77, 1993.

    Google Scholar 

  101. Vunjak-Novakovic, G., B. Obradovic, I. Martin, P. M. Bursac, R. Langer, and L. E. Freed. Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol. Prog. 14:193–202, 1998.

    Article  Google Scholar 

  102. Waldman, S. D., C. G. Spiteri, M. D. Grynpas, R. M. Pilliar, and R. A. Kandel. Long-term intermittent shear deformation improves the quality of cartilaginous tissue formed in vitro. J. Orthop. Res. 21:590–596, 2003.

    Article  Google Scholar 

  103. Walker, P. S., and M. J. Erkman. The role of the menisci in force transmission across the knee. Clin. Orthop. 184–192, 1975.

  104. Webber, R. J., M. G. Harris, and A. J. Hough Jr. Cell culture of rabbit meniscal fibrochondrocytes: Proliferative and synthetic response to growth factors and ascorbate. J. Orthop. Res. 3:36–42, 1985.

    Google Scholar 

  105. Wilson, A. S., P. G. Legg, and J. C. McNeur. Studies on the innervation of the medial meniscus in the human knee joint. Anat. Rec. 165:485–491, 1969.

    Google Scholar 

  106. Wolff, J. The Law of Bone Remodelling. Berlin: Springer-Verlag, 1986, pp. xii, 126

    Google Scholar 

  107. Zeichen, J., M. van Griensven, and U. Bosch. The proliferative response of isolated human tendon fibroblasts to cyclic biaxial mechanical strain. Am. J. Sports Med. 28:888–892, 2000.

    Google Scholar 

  108. Zhu,W., K. Y. Chern, and V. C. Mow. Anisotropic viscoelastic shear properties of bovine meniscus. Clin. Orthop. 34–45, 1994.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

AufderHeide, A.C., Athanasiou, K.A. Mechanical Stimulation Toward Tissue Engineering of the Knee Meniscus. Annals of Biomedical Engineering 32, 1163–1176 (2004). https://doi.org/10.1114/B:ABME.0000036652.31658.f3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/B:ABME.0000036652.31658.f3

Navigation