Skip to main content
Log in

High-sensitivity express immunochromatographic method for detection of plant infection by tobacco mosaic virus

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

A highly sensitive express immunochromatography method for molecular diagnosis of plant virus infections was elaborated on the example of a model object — tobacco mosaic virus (TMV). The analysis time does not exceed 5 min, and the lower limit of TMV detection in non-clarified leaf extract (2–4 ng/ml) is comparable with the sensitivity of the enzyme-linked immunosorbent assay of the virus. A single measurement requires 0.1–0.2 ml tested solution (extract from 10–20 mg of leaf material). The sensitivity of TMV determination in the leaf tissue extract was increased by more than one order of magnitude using signal enhancement by silver and is 0.1 ng/ml. In this case, analysis time did not exceed 25 min. The simplicity of this method makes it especially convenient in express diagnosis of numerous analyzed specimens. The prototype of a diagnostic kit for serial analyses of plant viral infections both in laboratory and field conditions was elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-azinobis(3-ethylbenzthiazolinesulfonic acid)

ELISA:

enzyme-linked immunosorbent assays

HRP:

horseradish peroxidase

IChA:

immunochromatography analysis

IgG-Au:

antibody conjugate with colloidal aurum

IgG-HRP:

antibody conjugate with horseradish peroxidase

TMV:

tobacco mosaic virus

TPB:

0.01 M K-phosphate buffer, pH 7.4, 0.1 M NaCl, 0.1% Triton X-100

References

  1. Gosling, J. P. (ed.) (2000) Immunoassays: A Practical Approach, Oxford University Press, Oxford.

    Google Scholar 

  2. Egorov, A. M., Osipov, A. P., Dzantiev, B. B., and Gavrilova, E. M. (1991) The Theory and Practice of Immunoenzyme Analysis [in Russian], Vysshaya Shkola, Moscow.

    Google Scholar 

  3. Wong, R., and Tse, H. (eds.) (2009) Lateral Flow Immunoassay, Humana Press, N. Y.

    Google Scholar 

  4. O’Farrell, B., and Bauer, J. T. (2006) IVD Technol., 12, 41–46.

    Google Scholar 

  5. Shim, W. B., Dzantiev, B. B., Eremin, S. A., and Chung, D. H. (2009) J. Microbiol. Biotechnol., 19, 83–92.

    PubMed  CAS  Google Scholar 

  6. Atabekov, I. G. (ed.) (2002) A Laboratory Course on General Virology [in Russian], Moscow State University Publishing House, Moscow.

    Google Scholar 

  7. Proll, E., and Richter, J. (1979) Arch. Phytopathol. PflSchutz. (Berlin), 15, 233–245.

    Google Scholar 

  8. Francki, R. I. B., and McLean, G. (1968) Aust. J. Biol. Sci., 21, 1311–1318.

    PubMed  CAS  Google Scholar 

  9. Moghal, S. M., and Francki, R. I. B. (1976) Virology, 73, 350–362.

    Article  PubMed  CAS  Google Scholar 

  10. Fribourg, C. E., and de Zoeten, G. A. (1970) Phytopathology, 60, 1420–1421.

    Article  Google Scholar 

  11. Takanami, T., and Kubo, S. (1979) J. Gen. Virol., 44, 153–159.

    Article  Google Scholar 

  12. Harlow, E., and Lane, D. (1988) Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, N. Y., pp. 392–393.

    Google Scholar 

  13. Dar, V. S., Ghosh, S., and Broor, S. (1994) J. Virol. Meth., 47, 51–58.

    Article  CAS  Google Scholar 

  14. Bogatyrev, V. A., Dykman, L. A., Khlebtsov, B. N., and Khlebtsov, N. G. (2004) Optika Spektrosk., 96, 139–147.

    Google Scholar 

  15. Sushko, A. D. (2007) Fotonika, No. 5, 14–19.

  16. Gnutova, R. V., and Krylov, A. V. (1975) Acta Phytopathol. Acad. Sci. Hung., 10, 203–209.

    Google Scholar 

  17. Erokhina, T. N., Ambrosova, S. M., Varitsev, Yu. A., Malofeeva, Yu. S., Knyazeva, V. P., and Kulyavtsev, A. V. (1993) Bioorg. Khim., 19, 941–949.

    CAS  Google Scholar 

  18. Hill, I. N., and Shephered, R. I. (1972) Virology, 47, 817–822.

    Article  PubMed  CAS  Google Scholar 

  19. Watson, J. D. (1954) Biochim. Biophys. Acta, 3, 10–19.

    Article  Google Scholar 

  20. Matthews, R. E. F. (1973) Plant Virology [Russian translation] (Atabekov, J. G., ed.) Mir, Moscow.

    Google Scholar 

  21. Berezin, I. V. (1976) Immobilized Enzymes. Current State and Perspectives [in Russian], Vol. 2, Moscow State University Publishing House, Moscow.

    Google Scholar 

  22. Zubtsov, D. A., et al. (2006) J. Biotechnol., 122, 16–27.

    Article  PubMed  CAS  Google Scholar 

  23. Gorovits, B. M., et al. (1993) J. Immunol. Meth., 157, 11–17.

    Article  CAS  Google Scholar 

  24. Dykman, L. A., and Bogatyrev, V. A. (1997) Biochemistry (Moscow), 62, 350–356.

    CAS  Google Scholar 

  25. Holmberg, K., Jensson, B., Kronberg, B., and Lindman, B. (2007) Surface-Active Substances and Polymers in Aqueous Solutions [Russian translation], Binomial, Laboratory of Knowledge, Moscow.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. F. Drygin.

Additional information

Original Russian Text © Yu. F. Drygin, A. N. Blintsov, A. P. Osipov, V. G. Grigorenko, I. P. Andreeva, A. I. Uskov, Yu. A. Varitsev, B. V. Anisimov, V. K. Novikov, J. G. Atabekov, 2009, published in Biokhimiya, 2009, Vol. 74, No. 9, pp. 1212–1220.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM09-038, June 28, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drygin, Y.F., Blintsov, A.N., Osipov, A.P. et al. High-sensitivity express immunochromatographic method for detection of plant infection by tobacco mosaic virus. Biochemistry Moscow 74, 986–993 (2009). https://doi.org/10.1134/S0006297909090065

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297909090065

Key words

Navigation