Skip to main content
Log in

AP endonuclease 1 as a key enzyme in repair of apurinic/apyrimidinic sites

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Human apurinic/apyrimidinic endonuclease 1 (APE1) is one of the key participants in the DNA base excision repair system. APE1 hydrolyzes DNA adjacent to the 5′-end of an apurinic/apyrimidinic (AP) site to produce a nick with a 3′-hydroxyl group and a 5′-deoxyribose phosphate moiety. APE1 exhibits 3′-phosphodiesterase, 3′-5′-exonuclease, and 3-phosphatase activities. APE1 was also identified as a redox factor (Ref-1). In this review, data on the role of APE1 in the DNA repair process and in other metabolic processes occurring in cells are analyzed as well as the interaction of this enzyme with DNA and other proteins participating in the repair system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AP-DNA:

DNA containing AP site

APE1:

apurinic/apyrimidinic endonuclease 1

AP site:

apurinic/apyrimidinic site

BER:

base excision repair

bp:

base pairs

dRP:

deoxyribose phosphate

F (tetrahydrofuran):

3′-hydroxy2′-hydroxymethyl-tetrahydrofuran

FAM:

fluorescein

FEN1:

flap endonuclease 1

nt:

nucleotide

NER:

nucleotide excision repair

NTH1:

homolog 1 of endonuclease III

OGG1:

8oxoguanine-DNA glycosylase

8-oxoG:

7,8-dihydro-8-oxoguanine

PARP1:

poly(ADP-ribose)polymerase 1

PCNA:

proliferating cell nuclear antigen

pF:

5′-tetrahydrofuran phosphate

PNK:

polynucleotide kinase-phosphatase

Pol β:

DNA polymerase β

3′-PUA:

3′-α,β-4-hydroxypenten-2-al

Tdp1:

tyrosyl-DNA phosphodiesterase 1

XRCC1:

human X-ray repair cross-complementing protein 1

References

  1. Wilson, D. M., and Barsky, D. (2001) The major human abasic endonuclease Ape1: formation, consequences and repair of abasic lesions in DNA, Mutat. Res., 484, 283–307.

    Article  Google Scholar 

  2. Lhomme, J., Constant, J. F., and Demeunynck, M. (1999) Abasic DNA structure, reactivity, and recognition, Biopolymers, 52, 65–83.

    CAS  PubMed  Google Scholar 

  3. Sczepanski, J. T., Wong, R. S., McKnight, J. N., Bowman, G. D., and Greenberg, M. M. (2010) Rapid DNA–protein cross-linking and strand scission by an abasic site in a nucleosome core particle, Proc. Natl. Acad. Sci. USA, 107, 22475–22480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lindahl, T. (2000) Suppression of spontaneous mutagenesis in human cells by DNA base excision repair, Mutat. Res., 462, 129–135.

    Article  CAS  PubMed  Google Scholar 

  5. Scharer, O. D. (2003) DNA damage and repair, Angew. Chem. Int. Ed., 42, 2074–2946.

    Article  CAS  Google Scholar 

  6. Lebedeva, N. A., Rechkunova, N. I., El-Khamisy, S. F., and Lavrik, O. I. (2012) Tyrosyl-DNA phosphodiesterase 1 initiates repair of apurinic/apyrimidinic sites, Biochimie, 94, 1749–1753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lebedeva, N. A., Rechkunova, N. I., Ishchenko, A. A., Saparbaev, M., and Lavrik, O. I. (2013) The mechanism of human tyrosyl-DNA phosphodiesterase 1 in the cleavage of APsite and its synthetic analogs, DNA Repair (Amsterdam), 12, 1037–1042.

    Article  CAS  Google Scholar 

  8. Khodyreva, S. N., Prasad, R., Ilina, E. S., Sukhanova, M. V., Kutuzov, M. M., Liu, Y., Hou, E. W., Wilson, S. H., and Lavrik, O. I. (2010) Apurinic/apyrimidinic (AP) site recognition by the 5’-dRP/AP lyase in poly(ADP-ribose) polymerase-1 (PARP-1), Proc. Natl. Acad. Sci. USA, 107, 22090–22095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fortini, P., and Dogliotti, E. (2007) Base damage and single-strand break repair: mechanisms and functional significance of shortand long-patch repair subpathways, DNA Repair (Amsterdam), 6, 398–409.

    Article  CAS  Google Scholar 

  10. Sobol, R. W., Prasad, R., Evenski, A., Baker, A., Yang, X. P., Horton, J. K., and Wilson, S. H. (2000) The lyase activity of the DNA repair protein ß-polymerase protects from DNA-damage-induced cytotoxicity, Nature, 405, 807810.

    Google Scholar 

  11. Liu, Y., Beard, W. A., Shock, D. D., Prasad, R., Hou, E. W., and Wilson, S. H. (2005) DNA polymerase ß and flap endonuclease 1 enzymatic specificities sustain DNA synthesis for long patch base excision repair, J. Biol. Chem., 280, 3665–3674.

    Article  CAS  PubMed  Google Scholar 

  12. Nazarkina, J. K., Petrousseva, I. O., Safronov, I. V., Lavrik, O. I., and Khodyreva, S. N. (2003) Interaction of flap endonuclease-1 and replication protein A with photoreactive intermediates of DNA repair, Biochemistry (Moscow), 68, 934–942.

    Article  CAS  Google Scholar 

  13. Lebedeva, N. A., Rechkunova, N. I., Dezhurov, S. V., Khodyreva, S. N., Favre, A., Blanco, L., and Lavrik, O. I. (2005) Comparison of functional properties of mammalian DNA polymerase ? and DNA polymerase ß in reactions of DNA synthesis related to DNA repair, Biochim. Biophys. Acta, 1751, 150–158.

    Article  CAS  PubMed  Google Scholar 

  14. Sukhanova, M. V., Khodyreva, S. N., Lebedeva, N. A., Prasad, R., Wilson, S. H., and Lavrik, O. I. (2005) Human base excision repair enzymes apurinic/apyrimidinic endonuclease1 (APE1), DNA polymerase ß and poly(ADP-ribose) polymerase 1: interplay between stranddisplacement DNA synthesis and proofreading exonuclease activity, Nucleic Acids Res., 33, 1222–1229.

    CAS  Google Scholar 

  15. Sukhanova, M., Khodyreva, S., and Lavrik, O. (2010) Poly(ADP-ribose) polymerase 1 regulates activity of DNA polymerase ß in long patch base excision repair, Mutat. Res., 685, 80–89.

    Article  CAS  PubMed  Google Scholar 

  16. Wiederhold, L., Leppard, J. B., Kedar, P., KarimiBusheri, F., Rasouli-Nia, A., Weinfeld, M., Tomkinson, A. E., Izumi, T., Prasad, R., Wilson, S. H., Mitra, S., and Hazra, T. K. (2004) AP endonuclease-independent DNA base excision repair in human cells, Mol. Cell, 15, 209220.

    Article  Google Scholar 

  17. Gros, L., Ishchenko, A. A., Ide, H., Elder, R. H., and Saparbaev, M. K. (2004) The major human APendonuclease (Ape1) is involved in the nucleotide incision repair pathway, Nucleic Acids Res., 32, 73–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Piersen, C. E., McCullough, A. K., and Lloyd, R. S. (2000) AP lyases and dRPases: commonality of mechanism, Mutat. Res., 459, 43–53.

    Article  CAS  PubMed  Google Scholar 

  19. Zharkov, D. O., and Grollman, A. P. (1998) MutY DNA glycosylase: base release and intermediate complex formation, Biochemistry, 37, 12384–12394.

    Article  CAS  PubMed  Google Scholar 

  20. Lindahl, T., Satoh, M. S., Poirier, G. G., and Klungland, A. (1995) Post-translational modification of poly(ADPribose) polymerase induced by DNA strand breaks, Trends Biochem. Sci., 20, 405–411.

    Article  CAS  PubMed  Google Scholar 

  21. Evans, A. R., Limp-Foster, M., and Kelley, M. R. (2000) Going APE over ref-1, Mutat. Res., 461, 83–108.

    Article  CAS  PubMed  Google Scholar 

  22. Li, M., and Wilson, D. M., 3rd (2014) Human apurinic/ apyrimidinic endonuclease 1, Antioxid. Redox Signal., 20, 678–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wilson, D. M., 3rd (2003) Properties of and substrate determinants for the exonuclease activity of human apurinic endonuclease Ape1, J. Mol. Biol., 330, 1027–1037.

    Article  CAS  PubMed  Google Scholar 

  24. Fritz, G. (2000) Human APE/Ref-1 protein, Int. J. Biochem. Cell Biol., 32, 925–929.

    Article  CAS  PubMed  Google Scholar 

  25. Robson, C. N., Milne, A. M., Pappin, D. J. C., and Hickson, I. D. (1991) Isolation of cDNA clones encoding an enzyme from bovine cells that repairs oxidative DNA damage in vitro: homology with bacterial repair enzymes, Nucleic Acids Res., 19, 1087–1092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mol, C. D., Hosfield, D. J., and Tainer, J. A. (2000) Abasic site recognition by two apurinic/apyrimidinic endonuclease families in DNA base excision repair: the 3’-ends justify the means, Mutat. Res., 460, 211–229.

    Article  CAS  PubMed  Google Scholar 

  27. Strauss, P. R., and Holt, C. M. (1998) Domain mapping of human apurinic/apyrimidinic endonuclease, J. Biol. Chem., 273, 14435–14441.

    Article  CAS  PubMed  Google Scholar 

  28. Chattopadhyay, R., Wiederhold, L., Szczesny, B., Boldogh, I., Hazra, T. K., Izumi, T., and Mitra, S. (2006) Identification and characterization of mitochondrial abasic (AP)-endonuclease in mammalian cells, Nucleic Acids Res., 34, 2067–2076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tell, G., Crivellato, E., Pines, A., Paron, I., Pucillo, C., Manzini, G., Bandiera, A., Kelley, M. R., Di Loreto, C., and Damante, G. (2001) Mitochondrial localization of APE/Ref-1 in thyroid cells, Mutat. Res., 485, 143–152.

    Article  CAS  PubMed  Google Scholar 

  30. Xanthoudakis, S., Smeyne, R. J., Wallace, J. D., and Curran, T. (1996) The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice, Proc. Natl. Acad. Sci. USA, 93, 8919–8923.

    Article  CAS  PubMed  Google Scholar 

  31. Fung, H., and Demple, B. (2005) A vital role for Ape1/Ref1 protein in repairing spontaneous DNA damage in human cells, Mol. Cell, 17, 463–470.

    Article  CAS  PubMed  Google Scholar 

  32. Izumi, T., Brown, D. B., Naidu, C. V., Bhakat, K. K., MacInnes, M. A., Saito, H., Chen, D. J., and Mitra, S. (2005) Two essential but distinct functions of the mammalian abasic endonuclease, Proc. Natl. Acad. Sci. USA, 102, 5739–5743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. David, S. S., and Williams, S. D. (1998) Chemistry of glycosylases and endonucleases involved in base-excision repair, Chem. Rev., 98, 1221–1261.

    Article  CAS  PubMed  Google Scholar 

  34. Lindahl, T. (1993) Instability and decay of the primary structure of DNA, Nature, 362, 709–715.

    Article  CAS  PubMed  Google Scholar 

  35. Suh, D., Wilson, D. M., 3rd, and Povirk, L. F. (1997) 3’Phosphodiesterase activity of human apurinic/apyrimidinic endonuclease at DNA double-strand break ends, Nucleic Acids Res., 25, 2495–2500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Krokan, H. E., Nilsen, H., Skorpen, F., Otterlei, M., and Slupphaug, G. (2000) Base excision repair of DNA in mammalian cells, FEBS Lett., 476, 73–77.

    Article  CAS  PubMed  Google Scholar 

  37. Izumi, T., Hazra, T. K., Boldogh, I., Tomkinson, A. E., Park, M. S., Ikeda, S., and Mitra, S. (2000) Requirement for human APendonuclease 1 for repair of 3’-blocking damage at DNA single-strand brakes induced by reactive oxygen species, Carcinogenesis, 21, 1329–1334.

    Article  CAS  PubMed  Google Scholar 

  38. Parsons, J. L., Dianova, I. I., and Dianov, G. L. (2004) APE1 is the major 3’-phosphoglycolate activity in human cell extracts, Nucleic Acids Res., 32, 3531–3536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shida, T., Kaneda, K., Ogawa, T., and Sekiguchi, J. (1999) Abasic site recognition mechanism by the Escherichia coli exonuclease III, Nucleic Acids Symp. Ser., 23, 195196.

    Google Scholar 

  40. Rosenquist, T. A., Zaika, E., Fernandes, A. S., Zharkov, D. O., Miller, H., and Grollman, A. P. (2003) The novel DNA glycosylase, NEIL1, protects mammalian cells from radiation-mediated cell death, DNA Repair (Amsterdam), 2, 581591.

    Google Scholar 

  41. Wilson, S. H., and Kunkel, T. A. (2000) Passing the baton in base excision repair, Nature Struct. Biol., 7, 176–178.

    Article  CAS  PubMed  Google Scholar 

  42. Fitzgerald, M. E., and Drohat, A. C. (2008) Coordinating the initial steps of base excision repair. Apurinic/apyrimidinic endonuclease 1 actively stimulates thymine DNA glycosylase by disrupting the product complex, J. Biol. Chem., 283, 32680–32690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hill, J. W., Hazra, T. K., Izumi, T., and Mitra, S. (2001) Stimulation of human 8-oxoguanine DNA glycosylase by APendonuclease: potential coordination of the initial steps in base excision repair, Nucleic Acids Res., 29, 430–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vidal, A. E., Hickson, I. D., Boiteux, S., and Radicella, J. P. (2001) Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human APendonuclease: bypass of the APlyase activity step, Nucleic Acids Res., 29, 1285–1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hang, B., and Singer, B. (2003) Protein–protein interactions involving DNA glycosylases, Chem. Res. Toxicol., 16, 1181–1195.

    Article  CAS  PubMed  Google Scholar 

  46. Sidorenko, V. S., Nevinsky, G. A., and Zharkov, D. O. (2007) Mechanism of interaction between human 8oxoguanine-DNA glycosylase and APendonuclease, DNA Repair (Amsterdam), 6, 317–328.

    Article  CAS  Google Scholar 

  47. Sidorenko, V. S., Nevinsky, G. A., and Zharkov, D. O. (2008) Specificity of stimulation of human 8-oxoguanineDNA glycosylase by APendonuclease, Biochem. Biophys. Res. Commun., 368, 175–179.

    Article  CAS  PubMed  Google Scholar 

  48. Nazarkina, Z. K., Khodyreva, S. N., Marsin, S., Lavrik, O. I., and Radicella, J. P. (2007) XRCC1 interactions with base excision repair DNA intermediates, DNA Repair (Amsterdam), 6, 254–264.

    Article  CAS  Google Scholar 

  49. Sassa, A., Caglayan, M., Dyrkheeva, N. S., Beard, W. A., and Wilson, S. H. (2014) Base excision repair of tandem modifications in a methylated CpG dinucleotide, J. Biol. Chem., 289, 13996–4008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marenstein, D. R., Chan, M. K., Altamirano, A., Basu, A. K., Boorstein, R. J., Cunningham, R. P., and Teebor, G. W. (2003) Substrate specificity of human endonuclease III (hNTH1). Effect of human APE1 on hNTH1 activity, J. Biol. Chem., 278, 9005–9012.

    Article  CAS  PubMed  Google Scholar 

  51. Yang, H., Clendenin, W. M., Wong, D., Demple, B., Slupska, M. M., Chiang, J.-H., and Miller, J. H. (2001) Enhanced activity of adenine-DNA glycosylase by apurinic/apyrimidinic endonuclease (Ape1) in mammalian base excision repair of an A/GO mismatch, Nucleic Acids Res., 29, 743–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bennet, R. A. O., Wilson, D. M., Wong, D., and Demple, B. (1997) Interaction of human apurinic endonuclease and DNA polymerase ß in the base excision repair pathway, Proc. Natl. Acad. Sci. USA, 94, 7166–7169.

    Article  Google Scholar 

  53. Liu, Y., Prasad, R., Beard, W. A., Kedar, P. S., Hou, E. W., Shock, D. D., and Wilson, S. H. (2007) Coordination of steps in single-nucleotide base excision repair mediated by apurinic/apyrimidinic endonuclease 1 and DNA polymerase ß, J. Biol. Chem., 282, 13532–13541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Singhal, R. K., Prasad, R., and Wilson, S. H. (1995) DNA polymerase ß conducts the gap-filling step in uracil-initiated base excision repair in a bovine testis nuclear extracts, J. Biol. Chem., 270, 949–957.

    Article  CAS  PubMed  Google Scholar 

  55. Sobol, R. W., Horton, J. K., Kuhn, R., Gu, H., Singhal, R. K., Prasad, R., Rajewsky, K., and Wilson, S. H. (1996) Requirement of mammalian DNA polymerase-ß in baseexcision repair, Nature, 379, 183–186.

    Article  CAS  PubMed  Google Scholar 

  56. Chen, D. S., Herman, T., and Demple, B. (1991) Two distinct human DNA diesterases that hydrolyze 3’-blocking deoxyribose fragments from oxidized DNA, Nucleic Acids Res., 19, 5907–5914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Horton, J. K., Srivastava, D. K., Zmudzka, B. Z., and Wilson, S. H. (1995) Strategic down-regulation of DNA polymerase ß by antisense RNA sensitizes mammalian cells to specific DNA damaging agents, Nucleic Acids Res., 23, 3810–3815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abyzov, A., Uzun, A., Straußs, P. R., and Ilyin, V. A. (2008) An APendonuclease 1–DNA polymerase ß complex: theoretical prediction of interacting surfaces, PLoS Comput. Biol., 4, e1000066.

    Article  CAS  Google Scholar 

  59. Moor, N. A., Vasil’eva, I. A., Anarbaev, R. O., Antson, A. A., and Lavrik, O. I. (2015) Quantitative characterization of protein–protein complexes involved in base excision DNA repair, Nucleic Acids Res., 43, 6009–6022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chagovetz, A. M., Sweasy, J. B., and Preston, B. D. (1997) Increased activity and fidelity of DNA polymerase ß on single-nucleotide gapped DNA, J. Biol. Chem., 272, 2750127504.

    Article  Google Scholar 

  61. Chou, K.-M., and Cheng, Y.-C. (2002) An exonucleolytic activity of human apurinic/apyrimidinic endonuclease on 3’-mispaired DNA, Nature, 415, 655–659.

    Article  CAS  PubMed  Google Scholar 

  62. Chou, K.-M., and Cheng, Y.-C. (2003) The exonuclease activity of human apurinic/apyrimidinic endonuclease (APE1): biochemical properties and inhibition by a natural dinucleotide P1, P4-Di (guanosine-5’) tetraphosphate (Gp4G), J. Biol. Chem., 278, 18289–18296.

    CAS  Google Scholar 

  63. Cistulli, C., Lavrik, O. I., Prasad, R., Hou, E., and Wilson, S. H. (2004) AP endonuclease and poly(ADP-ribose) polymerase-1 interact with the same base excision repair intermediate, DNA Repair (Amsterdam), 3, 581–591.

    Article  CAS  Google Scholar 

  64. Dyrkheeva, N. S., Lomzov, A. A., Pyshnyi, D. V., Khodyreva, S. N., and Lavrik, O. I. (2006) Efficiency of exonucleolytic action of apurinic/apyrimidinic endonuclease 1 towards matched and mismatched dNMP at the 3’terminus of different oligomeric DNA structures correlates with thermal stability of DNA duplexes, Biochim. Biophys. Acta, 764, 699–706.

    Article  CAS  Google Scholar 

  65. Dyrkheeva, N. S., Khodyreva, S. N., Sukhanova, M. V., Safronov, I. V., Dezhurov, S. V., and Lavrik, O. I. (2006) 3’5’ exonuclease activity of human apurinic/apyrimidinic endonuclease 1 towards DNAs containing dNMP and their modified analogs at the 3’-end of single strand DNA break, Biochemistry (Moscow), 71, 200–210.

    Article  CAS  Google Scholar 

  66. Dyrkheeva, N. S., Khodyreva, N. S., and Lavrik, O. I (2007) Multifunctional human apurinic/apyrimidinic endonuclease 1: role of additional functions, Mol. Biol., 41, 402–416.

    Article  CAS  Google Scholar 

  67. Lebedeva, N. A., Khodyreva, S. N., Favre, A., and Lavrik, O. I. (2003) AP endonuclease 1 has no biologically significant 3’-5’ exonuclease activity, Biochem. Biophys. Res. Commun., 300, 182–187.

    Article  CAS  PubMed  Google Scholar 

  68. Krutyakov, V. M. (2004) Antimutagenic role of autonomous 3’-5’ exonucleases, Mol. Biol., 38, 696–705.

    Article  CAS  Google Scholar 

  69. Burkovics, P., Szukacsov, V., Unk, I., and Haracska, L. (2006) Human Ape2 protein has a 3’-5’ exonuclease activity that acts preferentially on mismatched base pairs, Nucleic Acids Res., 34, 2508–2515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lavrik, O. I., Prasad, R., Sobol, R. W., Horton, J. K., Ackerman, E. J., and Wilson, S. H. (2001) Photoaffinity labeling of mouse fibroblast enzymes by a base excision repair intermediate. Evidence for the role of poly(ADPribose) polymerase-1, J. Biol. Chem., 276, 25541–25548.

    Article  CAS  PubMed  Google Scholar 

  71. Dianova, I. I., Bohr, V. A., and Dianov, G. L. (2001) Interaction of human APendonuclease 1 with flap endonuclease 1 and proliferating cell nuclear antigen involved in long-patch base excision repair, Biochemistry, 40, 1263912644.

    Article  CAS  Google Scholar 

  72. Ranalli, T. A., Tom, S., and Bambara, R. A. (2002) AP endonuclease 1 coordinates flap endonuclease 1 and DNA ligase I activity in long patch base excision repair, J. Biol. Chem., 277, 41715–41724.

    Article  CAS  PubMed  Google Scholar 

  73. Kutuzov, M. M., Ilina, E. S., Sukhanova, M. V., Pyshnaya, I. A., Pyshnyi, D. V., Lavrik, O. I., and Khodyreva, S. N. (2011) Interaction of poly(ADP-ribose) polymerase 1 with apurinic/apyrimidinic sites within clustered DNA damage, Biochemistry (Moscow), 76, 147–156.

    Article  CAS  Google Scholar 

  74. Kutuzov, M. M., Khodyreva, S. N., Ilina, E. S., Sukhanova, M. V., Ame, J.-C., and Lavrik, O. I. (2015) Interaction of PARP-2 with AP site containing DNA, Biochimie, 112, 10–19.

    Article  CAS  PubMed  Google Scholar 

  75. Prasad, R., Dyrkheeva, N., Williams, J., and Wilson, S. H. (2015) Mammalian base excision repair: functional partnership between PARP-1 and APE1 in APsite repair, PLoS One, 10, e0124269.

    Google Scholar 

  76. Mol, C. D., Izumi, T., Mitra, S., and Tainer, J. (2000) DNA bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination, Nature, 430, 451–455.

    Google Scholar 

  77. Freudenthal, B. D., Beard, W. A., Cuneo, M. J., Dyrkheeva, N. S., and Wilson, S. H. (2015) Capturing snapshots of APE1 processing DNA damage, Nat. Struct. Mol. Biol., 22, 924–931.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Strauss, P. R., Beard, W. A., Patterson, T. A., and Wilson, S. H. (1997) Substrate binding by human apurinic/apyrimidinic endonuclease indicates a Briggs–Haldane mechanism, J. Biol. Chem., 272, 1302–1307.

    Article  CAS  PubMed  Google Scholar 

  79. Beloglazova, N. G., Kirpota, O. O., Starostin, K. V., Ishchenko, A. A., Yamkovoy, V. I., Zharkov, D. O., Douglas, K. T., and Nevinsky, G. A. (2004) Thermodynamic, kinetic and structural basis for recognition and repair of abasic sites in DNA by apurinic/apyrimidinic endonuclease from human placenta, Nucleic Acids Res., 32, 5134–5146.

    CAS  PubMed  Google Scholar 

  80. Wilson, D. M., 3rd, Takeshita, M., Grollman, A. P., and Demple, B. (1995) Incision activity of human apurinic endonuclease (Ape) at abasic site analogs in DNA, J. Biol. Chem., 270, 16002–16007.

    Article  CAS  PubMed  Google Scholar 

  81. Gorman, M. A., Morera, S., Rothwell, D. G., De La Fortelle, E., Mol, C. D., Tainer, J. A., Hickson, I. D., and Freemont, P. S. (1997) The crystal structure of the human DNA repair endonuclease HAP1 suggests the recognition of extra-helical deoxyribose at DNA abasic sites, EMBO J., 19, 6548–6558.

    Article  Google Scholar 

  82. Beernink, P. T., Segelke, B. W., Hadi, M. Z., Erzberger, J. P., Wilson, D. M., and Rupp, B. (2001) Two divalent metal ions in the active site of a new crystal form of human apurinic/apyrimidinic endonuclease, Ape1: implications for the catalytic mechanism, J. Mol. Biol., 307, 10231034.

    Google Scholar 

  83. Barzilay, G., Walker, L. J., Robson, C. N., and Hickson, I. D. (1995) Site-directed mutagenesis of the human DNA repair enzyme HAP1: identification of residues important for APendonuclease and RNase H activity, Nucleic Acids Res., 23, 1544–1550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mundle, S. T., Fattal, M. H., Melo, L. F., Coriolan, J. D., O’Regan, N. E., and Strauss, P. R. (2004) Novel role of tyrosine in catalysis by human A Pendonuclease 1, DNA Repair (Amsterdam), 3, 1447–1455.

    Article  CAS  Google Scholar 

  85. Kane, C. M., and Linn, S. (1981) Purification and characterization of an apurinic/apyrimidinic endonuclease from HeLa cells, J. Biol. Chem., 256, 3405–3414.

    CAS  PubMed  Google Scholar 

  86. Masuda, Y., Bennet, R. A. O., and Demple, B. (1998) Rapid dissociation of human apurinic endonuclease (Ape1) from incised DNA induced by magnesium, J. Biol. Chem., 273, 30360–30365.

    Article  CAS  PubMed  Google Scholar 

  87. Lipton, A. S., Heck, R. W., Primak, S., McNeill, D. R., Wilson, D. M., 3rd, and Ellis, P. D. (2008) Characterization of Mg2+ binding to the DNA repair protein apurinic/apyrimidinic endonuclease 1 via solid-state 25Mg NMR spectroscopy, J. Am. Chem. Soc., 130, 93329341.

    Google Scholar 

  88. Oezguen, N., Schein, C. H., Peddi, S. R., Power, T. D., Izumi, T., and Braun, W. A. (2007) “Moving metal mechanism” for substrate cleavage by the DNA repair endonuclease APE-1, Proteins, 68, 313–323.

    Article  CAS  PubMed  Google Scholar 

  89. McNeill, D. R., Narayana, A., Wong, H.-K., and Wilson, D. M., 3rd (2004) Inhibition of Ape1 nuclease activity by lead, iron and cadmium, Toxicogenomics, 112, 799804.

    Google Scholar 

  90. Wilson, D. M., 3rd, Takeshita, M., and Demple, B. (1997) Abasic site binding by the human apurinic endonuclease, Ape, and determination of the DNA contact sites, Nucleic Acids Res., 25, 933–939.

    CAS  PubMed  Google Scholar 

  91. Erzberger, J. P., Barsky, D., Scharer, O. D., Colvin, M. E., and Wilson, D. M. (1998) Elements in abasic site recognition by the major human and E. coli apurinic/apyrimidinic endonucleases, Nucleic Acids Res., 26, 2771–2778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cuniasse, P., Fazakerly, G. V., Guschlbauer, W., Kaplan, B. E., and Sowers, L. C. (1990) The abasic sites as a challenge to DNA polymerase. A nuclear magnetic resonance study of G, C and T opposite a model abasic site, J. Mol. Biol., 213, 303–314.

    Article  CAS  PubMed  Google Scholar 

  93. David-Cordonnier, M. H., Cunniffe, S. M., Hickson, I. D., and O’Neill, P. (2002) Efficiency of incision of an AP site within clustered DNA damage by the major human AP endonuclease, Biochemistry, 41, 634–642.

    Article  CAS  PubMed  Google Scholar 

  94. Starostenko, L. V., Maltseva, E. A., Lebedeva, N. A., Pestryakov, P. E., Lavrik, O. I., and Rechkunova, N. I. (2016) Interaction of nucleotide excision repair protein XPC–RAD23B with DNA-containing benzo[a]pyrenederived adduct and apurinic/apyrimidinic site within a cluster, Biochemistry (Moscow), 81, 350–360.

    Article  CAS  Google Scholar 

  95. Marenstein, D. R., Wilson, D. M., and Teebor, G. W. (2003) Human APendonuclease (APE1) demonstrates endonucleolytic activity against APsites in single-stranded DNA, DNA Repair (Amsterdam), 3, 527–533.

    Article  CAS  Google Scholar 

  96. Lowry, D. F., Hoyt, D. W., Khazi, F. A., Bagu, J., Lindsey, A. G., and Wilson, D. M. (2003) Investigation of the role of the histidine–aspartate pair in the human exonuclease IIIlike abasic endonuclease, Ape1, J. Mol. Biol., 329, 311–322.

    Article  CAS  PubMed  Google Scholar 

  97. Wilson, D. M., 3rd (2005) Ape1 abasic endonuclease activity is regulated by magnesium and potassium concentrations and is robust on alternative DNA structures, J. Mol. Biol., 345, 1003–1014.

    Article  CAS  PubMed  Google Scholar 

  98. Fan, J., Matsumoto, Y., and Wilson, D. M., 3rd (2006) Nucleotide sequence and DNA secondary structure, as well as replication protein A, modulate the single-stranded abasic endonuclease activity of APE1, J. Biol. Chem., 281, 3889–3898.

    CAS  PubMed  Google Scholar 

  99. Berquist, B. R., McNeill, D. R., and Wilson, D. M., 3rd (2008) Characterization of abasic endonuclease activity of human Ape1 on alternative substrates, as well as effects of ATP and sequence context on APsite incision, J. Mol. Biol., 379, 17–27.

    CAS  Google Scholar 

  100. Tell, G., Quadrifoglio, F., Tiribelli, C., and Kelley, M. R. (2009) The many functions of APE1/Ref-1: not only a DNA repair enzyme, Antioxid. Redox Signal., 11, 571574.

    Article  CAS  Google Scholar 

  101. Thakur, S., Dhiman, M., Tell, G., and Mantha, A. K. (2015) A review on protein–protein interaction network of APE1/Ref-1 and its associated biological functions, Cell Biochem. Funct., 33, 101–112.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Lavrik.

Additional information

Original Russian Text © N. S. Dyrkheeva, N. A. Lebedeva, O. I. Lavrik, 2016, published in Biokhimiya, 2016, Vol. 81, No. 9, pp. 1198-1216.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyrkheeva, N.S., Lebedeva, N.A. & Lavrik, O.I. AP endonuclease 1 as a key enzyme in repair of apurinic/apyrimidinic sites. Biochemistry Moscow 81, 951–967 (2016). https://doi.org/10.1134/S0006297916090042

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916090042

Keywords

Navigation