Skip to main content
Log in

Status epilepticus impairs synaptic plasticity in rat hippocampus and is followed by changes in expression of NMDA receptors

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Cognitive deficits and memory loss are frequent in patients with temporal lobe epilepsy. Persistent changes in synaptic efficacy are considered as a cellular substrate underlying memory processes. Electrophysiological studies have shown that the properties of short-term and long-term synaptic plasticity in the cortex and hippocampus may undergo substantial changes after seizures. However, the neural mechanisms responsible for these changes are not clear. In this study, we investigated the properties of short-term and long-term synaptic plasticity in rat hippocampal slices 24 h after pentylenetetrazole (PTZ)-induced status epilepticus. We found that the induction of long-term potentiation (LTP) in CA1 pyramidal cells is reduced compared to the control, while short-term facilitation is increased. The experimental results do not support the hypothesis that status epilepticus leads to background potentiation of hippocampal synapses and further LTP induction becomes weaker due to occlusion, as the dependence of synaptic responses on the strength of input stimulation was not different in the control and experimental animals. The decrease in LTP can be caused by impairment of molecular mechanisms of neuronal plasticity, including those associated with NMDA receptors and/or changes in their subunit composition. Realtime PCR demonstrated significant increases in the expression of GluN1 and GluN2A subunits 3 h after PTZ-induced status epilepticus. The overexpression of obligate GluN1 subunit suggests an increase in the total number of NMDA receptors in the hippocampus. A 3-fold increase in the expression of the GluN2B subunit observed 24 h after PTZ-induced status epilepticus might be indicative of an increase in the proportion of GluN2B-containing NMDA receptors. Increased expression of the GluN2B subunit may be a cause for reducing the magnitude of LTP at hippocampal synapses after status epilepticus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACSF:

artificial cerebrospinal fluid

CycA:

cyclophilin A

fEPSP:

field excitatory postsynaptic potentials

LTP:

long-term synaptic potentiation

NMDA:

N-methyl-Daspartate

PTZ:

pentylenetetrazole

References

  1. Giovagnoli, A. R., and Avanzini, G. (1999) Learning and memory impairment in patients with temporal lobe epilepsy: relation to the presence, type, and location of brain lesion, Epilepsia, 40, 904–911.

    Article  CAS  PubMed  Google Scholar 

  2. Aniol, V. A., Ivanova-Dyatlova, A. Y., Keren, O., Guekht, A. B., Sarne, Y., and Gulyaeva, N. V. (2013) A single pentylenetetrazole-induced clonic-tonic seizure episode is accompanied by a slowly developing cognitive decline in rats, Epilepsy Behav., 26, 196–202.

    Article  PubMed  Google Scholar 

  3. Kalemenev, S. V., Zubareva, O. E., Frolova, E. V., Sizov, V. V., Lavrentyeva, V. V., Lukomskaya, N. Y., Kim, K., Zaitsev, A. V., and Magazanik, L. G. (2015) Impairment of exploratory behavior and spatial memory in adolescent rats in lithium–pilocarpine model of temporal lobe epilepsy, Dokl. Biol. Sci., 463, 175–177.

    Article  CAS  PubMed  Google Scholar 

  4. Kandel, E. R. (2004) The molecular biology of memory storage: a dialog between genes and synapses, Biosci. Rep., 24, 475–522.

    Article  PubMed  Google Scholar 

  5. Abegg, M. H., Savic, N., Ehrengruber, M. U., McKinney, R. A., and Gahwiler, B. H. (2004) Epileptiform activity in rat hippocampus strengthens excitatory synapses, J. Physiol., 554, 439–448.

    Article  CAS  PubMed  Google Scholar 

  6. Muller, L., Tokay, T., Porath, K., Kohling, R., and Kirschstein, T. (2013) Enhanced NMDA receptor-dependent LTP in the epileptic CA1 area via upregulation of NR2B, Neurobiol. Dis., 54, 183–193.

    Article  PubMed  Google Scholar 

  7. Zhou, J. L., Shatskikh, T. N., Liu, X., and Holmes, G. L. (2007) Impaired single cell firing and long-term potentiation parallels memory impairment following recurrent seizures, Eur. J. Neurosci., 25, 3667–3677.

    Article  PubMed  Google Scholar 

  8. Meador, K. J. (2007) The basic science of memory as it applies to epilepsy, Epilepsia, 48, 23–25.

    Article  PubMed  Google Scholar 

  9. Debanne, D., Thompson, S. M., and Gahwiler, B. H. (2006) A brief period of epileptiform activity strengthens excitatory synapses in the rat hippocampus in vitro, Epilepsia, 47, 247–256.

    Article  PubMed  Google Scholar 

  10. Kryukov, K. A., Kim, K. K., Magazanik, L. G., and Zaitsev, A. V. (2016) Status epilepticus alters hippocampal long-term synaptic potentiation in a rat lithium-pilocarpine model, Neuroreport, 27, 1191–1195.

    Article  CAS  PubMed  Google Scholar 

  11. Suarez, L. M., Cid, E., Gal, B., Inostroza, M., BrotonsMas, J. R., Gomez-Dominguez, D., de la Prida, L. M., and Solis, J. M. (2012) Systemic injection of kainic acid differently affects LTP magnitude depending on its epileptogenic efficiency, PLoS One, 7, e48128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guli, X., Tokay, T., Kirschstein, T., and Kohling, R. (2016) Status epilepticus enhances depotentiation after fully established LTP in an NMDAR-dependent but GluN2B-independent manner, Neural Plast., 6592038.

    Google Scholar 

  13. O’Leary, H., Bernard, P. B., Castano, A. M., and Benke, T. A. (2016) Enhanced long term potentiation and decreased AMPA receptor desensitization in the acute period following a single kainate induced early life seizure, Neurobiol. Dis., 87, 134–144.

    Article  PubMed  Google Scholar 

  14. Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B., and Seeburg, P. H. (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors, Neuron, 12, 529–540.

    Article  CAS  PubMed  Google Scholar 

  15. Cull-Candy, S., Brickley, S., and Farrant, M. (2001) NMDA receptor subunits: diversity, development and disease, Curr. Opin. Neurobiol., 11, 327–335.

    Article  CAS  PubMed  Google Scholar 

  16. Naylor, D. E., Liu, H., Niquet, J., and Wasterlain, C. G. (2013) Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus, Neurobiol. Dis., 54, 225–238.

    Article  CAS  PubMed  Google Scholar 

  17. Di Maio, R., Mastroberardino, P. G., Hu, X., Montero, L., and Greenamyre, J. T. (2011) Pilocarpine alters NMDA receptor expression and function in hippocampal neurons: NADPH oxidase and ERK1/2 mechanisms, Neurobiol. Dis., 42, 482–495.

    Article  PubMed  Google Scholar 

  18. Bartlett, T. E., Bannister, N. J., Collett, V. J., Dargan, S. L., Massey, P. V., Bortolotto, Z. A., Fitzjohn, S. M., Bashir, Z. I., Collingridge, G. L., and Lodge, D. (2007) Differential roles of NR2Aand NR2B-containing NMDA receptors in LTP and LTD in the CA1 region of two-week-old rat hippocampus, Neuropharmacology, 52, 60–70.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, D., Cui, Z., Zeng, Q., Kuang, H., Wang, L. P., Tsien, J. Z., and Cao, X. (2009) Genetic enhancement of memory and long-term potentiation but not CA1 longterm depression in NR2B transgenic rats, PLoS One, 4, e7486.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Swijsen, A., Nelissen, K., Janssen, D., Rigo, J. M., and Hoogland, G. (2012) Validation of reference genes for quantitative real-time PCR studies in the dentate gyrus after experimental febrile seizures, BMC Res. Notes, 5, 685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method, Methods, 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  22. Zaitsev, A. V., and Anwyl, R. (2012) Inhibition of the slow afterhyperpolarization restores the classical spike timingdependent plasticity rule obeyed in layer 2/3 pyramidal cells of the prefrontal cortex, J. Neurophysiol., 107, 205–215.

    Article  CAS  PubMed  Google Scholar 

  23. Buonomano, D. V. (1999) Distinct functional types of associative long-term potentiation in neocortical and hippocampal pyramidal neurons, J. Neurosci., 19, 6748–6754.

    CAS  PubMed  Google Scholar 

  24. Ben-Ari, Y., and Gho, M. (1988) Long-lasting modification of the synaptic properties of rat CA3 hippocampal neurones induced by kainic acid, J. Physiol., 404, 365–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Amakhin, D. V., Ergina, J. L., Chizhov, A. V., and Zaitsev, A. V. (2016) Synaptic conductances during interictal discharges in pyramidal neurons of rat entorhinal cortex, Front. Cell. Neurosci., 10, 233.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zaitsev, A. V., Kim, K. K., Vasilev, D. S., Lukomskaya, N. Y., Lavrentyeva, V. V., Tumanova, N. L., Zhuravin, I. A., and Magazanik, L. G. (2015) N-methyl-D-aspartate receptor channel blockers prevent pentylenetetrazoleinduced convulsions and morphological changes in rat brain neurons, J. Neurosci. Res., 93, 454–465.

    Article  CAS  PubMed  Google Scholar 

  27. Aniol, V. A., Stepanichev, M. Y., Lazareva, N. A., and Gulyaeva, N. V. (2011) An early decrease in cell proliferation after pentylenetetrazole-induced seizures, Epilepsy Behav., 22, 433–441.

    Article  CAS  PubMed  Google Scholar 

  28. Ahmed, M. M., Arif, M., Chikuma, T., and Kato, T. (2005) Pentylenetetrazol-induced seizures affect the levels of prolyl oligopeptidase, thimet oligopeptidase and glial proteins in rat brain regions, and attenuation by MK-801 pretreatment, Neurochem. Int., 47, 248–259.

    Article  CAS  PubMed  Google Scholar 

  29. Zhvania, M. G., Ksovreli, M., Japaridze, N. J., and Lordkipanidze, T. G. (2015) Ultrastructural changes to rat hippocampus in pentylenetetrazoland kainic acidinduced status epilepticus: a study using electron microscopy, Micron, 74, 22–29.

    Article  CAS  PubMed  Google Scholar 

  30. Ahmadirad, N., Shojaei, A., Javan, M., Pourgholami, M. H., and Mirnajafi-Zadeh, J. (2014) Effect of minocycline on pentylenetetrazol-induced chemical kindled seizures in mice, Neurol. Sci., 35, 571–576.

    Article  PubMed  Google Scholar 

  31. Davoudi, M., Shojaei, A., Palizvan, M. R., Javan, M., and Mirnajafi-Zadeh, J. (2013) Comparison between standard protocol and a novel window protocol for induction of pentylenetetrazol kindled seizures in the rat, Epilepsy Res., 106, 54–63.

    Article  CAS  PubMed  Google Scholar 

  32. Wasterlain, C. G., Naylor, D. E., Liu, H., Niquet, J., and Baldwin, R. (2013) Trafficking of NMDA receptors during status epilepticus: therapeutic implications, Epilepsia, 54, 78–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paoletti, P., Bellone, C., and Zhou, Q. (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease, Nat. Rev. Neurosci., 14, 383–400.

    Article  CAS  PubMed  Google Scholar 

  34. Fox, C. J., Russell, K. I., Wang, Y. T., and Christie, B. R. (2006) Contribution of NR2A and NR2B NMDA subunits to bidirectional synaptic plasticity in the hippocampus in vivo, Hippocampus, 16, 907–915.

    Article  CAS  PubMed  Google Scholar 

  35. Xu, Z., Chen, R. Q., Gu, Q. H., Yan, J. Z., Wang, S. H., Liu, S. Y., and Lu, W. (2009) Metaplastic regulation of long-term potentiation/long-term depression threshold by activity-dependent changes of NR2A/NR2B ratio, J. Neurosci., 29, 8764–8773.

    Article  CAS  PubMed  Google Scholar 

  36. Frasca, A., Aalbers, M., Frigerio, F., Fiordaliso, F., Salio, M., Gobbi, M., Cagnotto, A., Gardoni, F., Battaglia, G. S., Hoogland, G., Di Luca, M., and Vezzani, A. (2011) Misplaced NMDA receptors in epileptogenesis contribute to excitotoxicity, Neurobiol. Dis., 43, 507–515.

    Article  CAS  PubMed  Google Scholar 

  37. Parsons, M. P., and Raymond, L. A. (2014) Extrasynaptic NMDA receptor involvement in central nervous system disorders, Neuron, 82, 279–293.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zaitsev.

Additional information

Original Russian Text © T. Y. Postnikova, O. E. Zubareva, A. A. Kovalenko, K. K. Kim, L. G. Magazanik, A. V. Zaitsev, 2017, published in Biokhimiya, 2017, Vol. 82, No. 3, pp. 418-428.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Postnikova, T.Y., Zubareva, O.E., Kovalenko, A.A. et al. Status epilepticus impairs synaptic plasticity in rat hippocampus and is followed by changes in expression of NMDA receptors. Biochemistry Moscow 82, 282–290 (2017). https://doi.org/10.1134/S0006297917030063

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917030063

Keywords

Navigation