Skip to main content
Log in

Prospects of antisense therapy technologies

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Three variants of antisense technologies are presently known: antisense oligonucleotides, RNA interference, and ribozymes. In spite of the difference in the mechanisms of action, all of them are based on a common principle: an antisense preparation works after binding with an RNA target to form a duplex. All of the three variants are intensely used in experiments in vivo. The review considers the current situation in the field of using antisense technologies to treat various diseases. Key words: antisense therapy, antisense oligonucleotides, RNA interference, ribozymes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miyagishi M., Hayashi M., Taira K. 2003. Comparison of the suppressive effects of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells. Antisense Nucleic Acid Drug Dev. 13, 1–7.

    Article  CAS  PubMed  Google Scholar 

  2. Paterson B.M., Roberts B.E., Kuff E.L. 1977. Structural gene identification and mapping by DNA-mRNA hybrid-arrested cell-free translation. Proc. Natl. Acad. Sci. USA. 74, 4370–4374.

    Article  CAS  PubMed  Google Scholar 

  3. Zamecnik P.C., Stephenson M.L. 1978. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. USA. 75, 280–284.

    Article  CAS  PubMed  Google Scholar 

  4. Izant J.G., Weintraub H. 1984. Inhibition of thymidine kinase gene expression by anti-sense RNA: A molecular approach to genetic analysis. Cell. 36, 1007–1015.

    Article  CAS  PubMed  Google Scholar 

  5. Mizuno T., Chou M.Y., Inouye M. 1984. A unique mechanism regulating gene expression: Translational inhibition by a complementary RNA transcript (micRNA). Proc. Natl. Acad. Sci. USA. 81, 1966–1970.

    Article  CAS  PubMed  Google Scholar 

  6. Simons R.W., Kleckner N. 1983. Translational control of IS10 transposition. Cell. 34, 683–691.

    Article  CAS  PubMed  Google Scholar 

  7. Crooke R.M., Graham M.J., Martin M.J., Lemonidis K.M., Wyrzykiewiecz T., Cummins LL. 2000. Metabolism of antisense oligonucleotides in rat liver homogenates. J. Pharmacol. Exp. Ther. 292, 140–149.

    CAS  PubMed  Google Scholar 

  8. Eder P.S., DeVine R.J., Dagle I.M., Walder J.A. 1991. Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3′ exonuclease in plasma. Antisense Res. Dev. 1, 141–151.

    CAS  PubMed  Google Scholar 

  9. Manoharan M. 1999. 2′-Carbohydrate modifications in antisense oligonucleotide therapy: Importance of conformation, configuration and conjugation. Biochim. Biophys. Acta. 1489, 117–130.

    CAS  PubMed  Google Scholar 

  10. Crooke S.T. 2000. Progress in antisense technology: The end of the beginning. Methods Enzymol. 313, 3–45.

    Article  CAS  PubMed  Google Scholar 

  11. Inoue H., Hayase Y., Imura A., Iwau S., Miura K., Ohtsuka E. 1987. Synthesis and hybridization studies on two complementary nona(2′-O-methyl)ribonucleotides. Nucleic Acids Res. 15, 6131–6148.

    Article  CAS  PubMed  Google Scholar 

  12. Agrawal S., Zhao Q. 1998. Mixed backbone oligonucleotides: improvement in oligonucleotide-induced toxicity in vivo. Antisense Nucleic Acid Drug Dev. 8, 135–139.

    CAS  PubMed  Google Scholar 

  13. Shen L.X., Kandimalla E.R., Agrawal S. 1998. Impact of mixedbackbone oligonucleotides on target binding affinity and target cleaving specificity and selectivity by Escherichia coli RNase H. Bioorg. Med. Chem. 6, 1695–1705.

    Article  CAS  PubMed  Google Scholar 

  14. Goel S., Desai K., Bulgaru A., et al. 2003. A safety study of a mixed-backbone oligonucleotide (GEM231) targeting the type I regulatory subunit alpha of protein kinase A using a continuous infusion schedule in patients with refractory solid tumors. Clin. Cancer Res. 9, 4069–4076.

    CAS  PubMed  Google Scholar 

  15. Kurreck J. 2003. Antisense technologies. Improvement through novel chemical modifications. Eur. J. Biochem. 270, 1628–1644.

    Article  CAS  PubMed  Google Scholar 

  16. Casey B.P., Glazer P.M. 2001. Gene targeting via triplehelix formation. Prog. Nucleic Acid Res. Mol. Biol. 67, 163–192.

    Article  CAS  PubMed  Google Scholar 

  17. Pestka S., Daugherty B.L., Jung V., Hotta K., Pestka R.K. 1984. AntimRNA: Specific inhibition of translation of single mRNA molecules. Proc. Natl. Acad. Sci. USA. 81, 7525–7528.

    Article  CAS  PubMed  Google Scholar 

  18. Mercatante D.R., Kole R. 2002. Control of alternative splicing by antisense oligonucleotides as a potential chemotherapy: Effects on gene expression. Biochim. Biophys. Acta. 1587, 126–132.

    CAS  PubMed  Google Scholar 

  19. Abe T., Suzuki S., Hatta T., Takai K., Yokota T., Takaku H. 1998. Specific inhibition of influenza virus RNA polymerase and nucleoprotein gene expression by liposomally encapsulated antisense phosphorothioate oligonucleotides in MDCK cells. Antiviral Chem. Chemother. 9, 253–262.

    CAS  Google Scholar 

  20. Roh H., Pippin J., Drebin J.A. 2000. Down-regulation of HER2/neu expression induces apoptosis in human cancer cells that overexpress HER2/neu. Cancer Res. 60, 560–565.

    CAS  PubMed  Google Scholar 

  21. Bielinska A., Kukowska Latallo J.F., Johnson J., Tomalia D.A., Baker J.R. 1996. Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. Nucleic Acids Res. 24, 2176–2182.

    Article  CAS  PubMed  Google Scholar 

  22. Haensler J., Szoka F.C. 1993. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconj. Chem. 4, 372–379.

    Article  CAS  Google Scholar 

  23. Akhtar S., Hughes M.D., Khan A., Bibby M., Hussain M., Nawaz Q., Double J., Sayyed P. 2000. The delivery of antisense therapeutics. Adv. Drug Deliv. Rev. 44, 3–21.

    Article  CAS  PubMed  Google Scholar 

  24. Brigger I., Dubernet C., Couvreur P. 2002. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 54, 631–651.

    Article  CAS  PubMed  Google Scholar 

  25. Manoharan M. 2002. Oligonucleotide conjugates as potential antisense drugs with improved uptake, biodistribution, targeted delivery, and mechanism of action. Antisense Nucleic Acid Drug Dev. 2, 103–128.

    Article  Google Scholar 

  26. Sandrasagra A., Leonard S.A., Tang L., et al. 2002. Discovery and development of respirable antisense therapeutics for asthma. Antisense Nucleic Acid Drug Dev. 12, 177–181.

    Article  CAS  PubMed  Google Scholar 

  27. Brand R.M. 2001. Topical and transdermal delivery of antisense oligonucleotides. Curr. Opin. Mol. Ther. 3, 244–248.

    CAS  PubMed  Google Scholar 

  28. Klibanov A.L., Maruyama K., Torchilin V.P., Huang L. 1990. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268, 235–237.

    Article  CAS  PubMed  Google Scholar 

  29. Zinker B.A., Rondinone C.M., Trevillyan J.M., Gum R.J., Clampit J.E., Waring J.F., et al. 2002. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. Proc. Natl. Acad. Sci. USA. 99, 11357–11362.

    Article  CAS  PubMed  Google Scholar 

  30. Field A.K. 1999. Oligonucleotides as inhibitors of human immunodeficiency virus. Curr. Opin. Mol. Ther. 1, 323–331.

    CAS  PubMed  Google Scholar 

  31. Tsuboi R., Ueki R., Ogawa H. 2001. Third Intercontinental Meeting of Hair Research Societies, Tokyo, Japan. Abstract 075.

  32. http://www.isispharm.com/product_pipeline.html

  33. Whitesell L., Rosolen A., Neckers L.M. 1991. In vivo modulation of N-myc expression by continous perfusion with an antisense oligonucleotide. Antisense Res. Dev. 1, 343–350.

    CAS  PubMed  Google Scholar 

  34. Anfossi G., Gewirtz A.M., Calabretta B. 1989. An oligomer complementary to c-myb-encoded mRNA inhibits proliferation of human myeloid leukemia cell lines. Proc. Natl. Acad. Sci. USA. 86, 3379–3383.

    Article  CAS  PubMed  Google Scholar 

  35. Chen G., Oh S., Monia B.P., Stacey D.W. 1996. Antisense oligonucleotides demonstrate a dominant role of c-Ki-RAS proteins in regulating the proliferation of diploid human fibroblasts. J. Biol. Chem. 271, 28259–28265.

    Article  CAS  PubMed  Google Scholar 

  36. Cioffi C.L., Garay M., Johnston J.F., et al. 1997. Selective inhibition of A-Raf and C-Raf mRNA expression by antisense oligodeoxynucleotides in rat vascular smooth muscle cells: Role of A-Raf and C-Raf in seruminduced proliferation. Mol. Pharmacol. 51, 383–389.

    CAS  PubMed  Google Scholar 

  37. Cioffi C.L., Monia B.P. 2000. Evaluation of biological role of c-Jun N-terminal kinase using an antisense approach. Methods Enzymol. 314, 363–378.

    Article  CAS  PubMed  Google Scholar 

  38. Holt J.T., Redner R.L., Nienhuis A.W. 1988. An oligomer complementary to c-MYC mRNa inhibits proliferation of HL60 promyelocytic cells and induces differentiation. Mol. Cell Biol. 8, 963–973.

    CAS  PubMed  Google Scholar 

  39. Jansen B., Schlagbauer-Wadl H., Brown B.D., et al. 1998. Bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nature Med. 4, 232–234.

    Article  CAS  PubMed  Google Scholar 

  40. Kondo Y., Koga S., Komata T., Kondo S. 2000. Treatment of prostate cancer in vitro and in vivo with 2-5A-anti-telomerase RNA component. Oncogene. 19, 2205–2211.

    Article  CAS  PubMed  Google Scholar 

  41. Leech S.H., Olie R.A., Simoes-Wust A.P., et al. 2000. Induction of apoptosis in lung cancer cells following bcl-xL antisense treatment. Int. J. Cancer. 87, 582–590.

    Article  PubMed  Google Scholar 

  42. Li F., Ackermann E.J., Bennett C.F., et al. 1999. Pleiotropic cell division defects and apoptosis induced by interference with survivin function. Nature Cell Biol. 1, 461–466.

    Article  CAS  PubMed  Google Scholar 

  43. Mahon F.X., Ripoche J., Pigeonnier V., et al. 1995. Inhibition of chronic myelogenous leukaemia cells harboring a BCR-ABL B3A2 junction by antisense oligonucleotides targeted at the B2A2 junction. Exp. Hematol. 23, 1606–1611.

    CAS  PubMed  Google Scholar 

  44. Tamm I., Wagner M. 2006. Antisense therapy in clinical oncology. Mol. Biotechnol. 33, 221–238.

    Article  CAS  PubMed  Google Scholar 

  45. Guo S., Kemphues K.J. 1995. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell. 81, 611–620.

    Article  CAS  PubMed  Google Scholar 

  46. Napoli C., Lemieux C., Jorgensen R. 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell. 2, 279–289.

    Article  CAS  PubMed  Google Scholar 

  47. Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391, 806–811.

    Article  CAS  PubMed  Google Scholar 

  48. Tuschl T., Zamore P.D., Lehmann R., et al. 1999. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Devel. 24, 3191–3197.

    Article  Google Scholar 

  49. Lee Y., Hur I., Park S.Y., Kim Y.K., Suh M.R., Kim V.N. 2006. The role of PACT in the RNA silencing pathway. EMBO J. 25, 522–532.

    Article  CAS  PubMed  Google Scholar 

  50. Tang G. 2005. siRNA and miRNA: An insight into RISCs. Trends Biochem Sci. 30, 106–114.

    Article  CAS  PubMed  Google Scholar 

  51. Bartel D.P. 2004. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116, 281–297.

    Article  CAS  PubMed  Google Scholar 

  52. Lee Y., Ahn C., Han J., Choi H., Kim J., Yim J., Lee J., Provost P., Radmark O., Kim S., Kim V.N. 2003. The nuclear RNase III Drosha initiates microRNA processing. Nature. 425, 415–419.

    Article  CAS  PubMed  Google Scholar 

  53. Yi R., Qin Y., Macara I.G., Cullen B.R. 2003. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016.

    Article  CAS  PubMed  Google Scholar 

  54. Chendrimada T.P., Gregory R.I., Kumaraswamy E., Norman J., Cooch N., Nishikura K., Shiekhattar R. 2005. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 436, 740–744.

    Article  CAS  PubMed  Google Scholar 

  55. Kiriakidou M., Nelson P.T., Kouranov A., Fitziev P., Bouyioukos C., Mourelatos Z., Hatzigeorgiou A. 2004. A combined computational-experimental approach predicts human microRNA targets. Genes Dev. 18, 1165–1178.

    Article  CAS  PubMed  Google Scholar 

  56. Lewis B.P., Burge C.B., Bartel D.P. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 120, 15–20.

    Article  CAS  PubMed  Google Scholar 

  57. Ryazansky S.S., Gvozdev V.A. 2008. Small RNAs and carcinogenesis. Biokhimiya. 73, 640–655.

    Google Scholar 

  58. http://www.regulusrx.com/therapeutic-focus/therapeutic-areas.php

  59. http://www.santaris.com/frame.cfm?sprog=2&grp=4&menu=1

  60. Meister G., Landthaler M., Patkaniowska A., Dorsett Y., Teng G., Tuschl T. 2004. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell. 15, 185–197.

    Article  CAS  PubMed  Google Scholar 

  61. Pillai R.S., Bhattacharyya S.N., Artus C.G., Zoller T., Cougot N., Basyuk E., Bertrand E., Filipowicz W. 2005. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science. 309, 1573–1576.

    Article  CAS  PubMed  Google Scholar 

  62. Kiriakidou M., Tan G.S., Lamprinaki S., de Planell-Saguer M., Nelson P.T., Mourelatos Z. 2007. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell. 129, 1141–1151.

    Article  CAS  PubMed  Google Scholar 

  63. Wassenegger M. 2005. The role of the RNAi machinery in heterochromatin formation. Cell. 122, 13–16.

    Article  CAS  PubMed  Google Scholar 

  64. Weinberg M.S., Villeneuve L.M., Ehsani A., Amarzguioui M., Aagaard L., Chen Z.X., Riggs A.D., Rossi J.J., Morris K.V. 2006. The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. RNA. 12, 256–262.

    Article  CAS  PubMed  Google Scholar 

  65. Ting A.H., Schuebel K.E., Herman J.G., Baylin S.B. 2005. Short double-stranded RNA induces transcriptional gene silencing in human cancer cells in the absence of DNA methylation. Nature Genet. 37, 906–910.

    Article  CAS  PubMed  Google Scholar 

  66. Galvani A., Sperling L. 2002. RNA interference by feeding in Paramecium. Trends Genet. 18, 11–12.

    Article  CAS  PubMed  Google Scholar 

  67. Shuey D.J., McCallus D.E., Giordano T. 2002. RNAi: Gene silencing in therapeutic intervention. Drug Discov. Today. 7, 1040–1046.

    Article  CAS  PubMed  Google Scholar 

  68. Caplen N.J., Fleenor J., Fire A., Morgan R.A. 2000. dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene. 252, 95–105.

    Article  CAS  PubMed  Google Scholar 

  69. Brummelkamp T.R., Bernards R., Agami R. 2002. A system for stable expression of short interfering RNAs in mammalian cells. Science. 296, 550–553.

    Article  CAS  PubMed  Google Scholar 

  70. Zeng Y., Wagner E.J., Cullen B.R. 2002. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell. 9, 1327–1333.

    Article  CAS  PubMed  Google Scholar 

  71. http://www.secinfo.com/d12TC3.z5K9.b.htm

  72. http://phx.corporate-ir.net/phoenix.zhtml?c=141787&p=irol-newsArticle&ID=761407&highlight

  73. http://www.stockhideout.com/big-board-stocks-options/8440-merck-buy-biotech-firm-fro-1-1b.html

  74. http://www.medicalnewstoday.com/articles/44387.php

  75. http://www.medicalnewstoday.com/articles/49334.php

  76. http://www.benitec.com/therapeutic.php

  77. http://www.rnainews.com/issues/6_4/features/144620-1.html

  78. http://www.drugresearcher.com/Tools-and-techniques/Sirna-launches-RNAi-asthma-program

  79. http://www.redorbit.com/news/health/225691/cytrx_announces_the_advancement_of_rip140_sirna_into_development_for/index.html

  80. http://www.dddmag.com/News-Roche-Acquires-Mirus-Bio.aspx

  81. http://www.mirusbio.com/therapeuticpipeline

  82. Cech T.R. 1987. The chemistry of self-splicing RNA and RNA enzymes. Science. 236, 1532–1539.

    Article  CAS  PubMed  Google Scholar 

  83. http://wsyachina.narod.ru/chemistry/molecular_evolution_2.html

  84. Symons R.H. 1992. Small catalytic RNAs. Annu. Rev. Biochem. 61, 641–671.

    Article  CAS  PubMed  Google Scholar 

  85. Fedor M.J. 2000. Structure and function of the hairpin ribozyme. J. Mol. Biol. 297, 269–291.

    Article  CAS  PubMed  Google Scholar 

  86. Dahm S.C., Uhlenbeck O.C. 1991. Role of divalent metal ions in the hammerhead RNA cleavage reaction. Biochemistry. 30, 9464–9469.

    Article  CAS  PubMed  Google Scholar 

  87. Breaker R.R., Joyce G.F. 1994. A DNA enzyme that cleaves RNA. Chem. Biol. 1, 223–229.

    Article  CAS  PubMed  Google Scholar 

  88. Baum D.A., Silverman S.K. 2008. Deoxyribozymes: Useful DNA catalysts in vitro and in vivo. Cell. Mol. Life Sci. 65, 2156–2174.

    Article  CAS  PubMed  Google Scholar 

  89. Vorobieva M.A., Kovalev N.A., Zenkova M.A., Veniaminova A.G., Vlasov V.V. 2006. Hammerhead binary ribozymes. Vestn. VOGiS. 10, 321–330.

    Google Scholar 

  90. Macejak D.G., Jensen K.L., Jamison S.F., Domenico K., Roberts E.C., Chaudhary N., von Carlowitz I., Bellon L., Tong M.J., Conrad A., Pavco P.A., Blatt L.M. 2000. Inhibition of hepatitis C virus (HCV) RNA-dependent translation and replication of a chimeric HCV poliovirus using synthetic stabilized ribozymes. Hepatology. 31, 769–776.

    Article  CAS  PubMed  Google Scholar 

  91. Sandberg J.A., Parker V.P., Blanchard K.S., Sweedler D., Powell J.A., Kachensky A., Bellon L., Usman N., Rossing T., Borden E., Blatt L.M. 2000. Pharmacokinetics and tolerability of an antiangiogenic ribozyme (ANGIOZYME) in healthy volunteers. J. Clin. Pharmacol. 40, 1462–1469.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Skoblov.

Additional information

Original Russian Text © M.Yu. Skoblov, 2009, published in Molekulyarnaya Biologiya, 2009, Vol. 43, No. 6, pp. 984–998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skoblov, M.Y. Prospects of antisense therapy technologies. Mol Biol 43, 917–929 (2009). https://doi.org/10.1134/S0026893309060028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893309060028

Keywords

Navigation