Skip to main content
Log in

The cellular mechanisms and regulation of metastasis formation

  • Reveiws
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Data accumulating in biochemistry, molecular and cell biology, and experimental oncology indicate that metastasis, which is the formation of secondary tumor growth foci during cancer progression, is a highly determinate and regulated process. The process includes the emergence of a metastatic cell population possessing special properties to allow cell dissemination and seeding in distant organs and the formation of a specific microenvironment in target organs. Among other changes, metastatic cells display plasticity, being capable of switching their motility to the most efficient mode depending on the properties of surrounding tissues; start expressing specific surface receptors to ensure their migration to target organs; and acquire certain features of stem cells, being capable of surviving and reproducing in an alien microenvironment. A specific niche, known as the premetastatic niche, develops in the target organ in a strong coordination with the above changes to stimulate the initiation and growth of a prospective metastasis. The review considers the recent findings related to the mechanisms that regulate the emergence of the metastatic cell population, the formation of premetastatic niches, and the coordination of the two processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ECM:

extracellular matrix

MMP:

matrix metalloproteinase

SC:

stem cell

CSC:

cancer stem cell

EMT:

epithelial-to-mesenchymal transition

MAT:

mesenchymal-to-amoeboid transition

AMT:

amoeboid-to-mesenchymal transition

References

  1. Perelmuter V.M., Manskikh V.N. 2012. Preniche as missing link of the metastatic niche concept explaining organ-preferential metastasis of malignant tumors and the type of metastatic disease. Biochemistry (Moscow). 77(1), 111–118.

    Article  CAS  Google Scholar 

  2. Wolf K., Muller R., Borgmann S., Brocker E., Friedl P. 2003. Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood. 102, 3262–3269.

    Article  PubMed  CAS  Google Scholar 

  3. Ridley A. 2011. Life at the leading edge. Cell. 145, 1012–1022.

    Article  PubMed  CAS  Google Scholar 

  4. Friedl P., Wolf K. 2010. Plasticity of cell migration: A multiscale tuning model. Cell Biol. 188, 11–19.

    Article  CAS  Google Scholar 

  5. Fackler O., Grosse R. 2008. Cell motility through plasma membrane blebbing. J. Cell Biol. 181(6), 879–884.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Cougoule C., Goethem E., Le Cabec V., Lafouresse F. 2012. Blood leukocytes and macrophages of various phenotypes have distinct abilities to form podosomes and to migrate in 3D environments. Eur. J. Cell Biol. 91, 938–949.

    Article  PubMed  CAS  Google Scholar 

  7. Svitkina T., Borisy G. 1999. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. Cell Biol. 31, 1009–1026.

    Article  Google Scholar 

  8. Pollard T., Borisy G. 2003. Cellular motility driven by assembly and disassembly of actin filaments. Cell. 112(4), 453–465.

    Article  PubMed  CAS  Google Scholar 

  9. Friedl P., Wolf K. 2003. Tumour-cell invasion and migration: Diversity and escape mechanisms. Nature Rev. Cancer. 3, 362–374.

    Article  CAS  Google Scholar 

  10. Madsen C., Sahai E. 2010. Cancer dissemination: Lessons from leukocytes. Cell. 9(1), 13–26.

    Google Scholar 

  11. Charras G., Paluch E. 2008. Blebs lead the way: How to migrate without lamellipodia. Nature. 9(9), 730–736.

    CAS  Google Scholar 

  12. Nürnberg A., Kitzing T., Grosse R. 2011. Nucleating actin for invasion. Nature Rev. Cancer. 1(3), 177–187.

    Article  Google Scholar 

  13. Otto A., Collins-Hooper H., Patel A., Dash P., Patel K. 2011. Adult skeletal muscle stem cell migration is mediated by a blebbing/amoeboid mechanism. Rejuvenat. Res. 14(3), 249–260.

    Article  CAS  Google Scholar 

  14. Yoshida K., Soldati T. 2006. Dissection of amoeboid movement into two mechanically distinct modes. J. Cell Sci. 119, 3833–3844.

    Article  PubMed  CAS  Google Scholar 

  15. Smith L., Aranda-Espinoza H., Haun J., Dembo M., Hammer D. 2007. Neutrophil traction stresses are concentrated in the uropod during migration. Biophys. J. 92, L58–L60.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Vignjevic D., Schoumacher M., Gavert N., Janssen K., Jih G., Louvard D., Ben-Zeev A., Robine S. 2007. Fascin, a novel target of b-catenin-tcf signaling, is expressed at the invasive front of human colon cancer. Cancer Res. 67, 6844–6853.

    Article  PubMed  CAS  Google Scholar 

  17. Chan A., Coniglio S., Chuang Y., Michaelson D., Knaus U., Philips M., Symons M. 2005. Roles of the Rac1 and Rac3 GTPases in human tumor cell invasion. Oncogene. 24, 7821–7829.

    Article  PubMed  CAS  Google Scholar 

  18. Bergerta M., Chandradossa S., Desaia R., Palucha E. 2012. Cell mechanics control rapid transitions between blebs and lamellipodia during migration. Proc. Natl. Acad. Sci. U. S. A. 109(36), 14434–14439.

    Article  Google Scholar 

  19. Pankova K., Rosel A., Novotny A., Brabek J. 2009. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell. Mol. Life Sci. 67(1), 63–71.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Bergert M., Chandradoss S., Desai R., Paluch E. 2012. Cell mechanics control rapid transitions between blebs and lamellipodia during migration. Proc. Natl. Acad. Sci. U. S. A. 109(36), 14434–14439.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Gadea G., Toledo M., Anguille C., Roux P. 2007. Loss of p53 promotes RhoA-ROCK-dependent cell migration and invasion in 3D matrices. J. Cell Biol. 178, 23–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Muller P., Caswell P., Doyle B., Iwanicki M., Tan E., Karim S., Lukashchuk N., Gillespie D., Ludwig R., Gosselin P. 2009. Mutant p53 drives invasion by promoting integrin recycling. Cell. 139, 1327–1341.

    Article  PubMed  Google Scholar 

  23. Nakamura T., Teramoto H., Ichihara A. 1986. Purification and characterization of a growth factor from rat platelets for mature parenchymal hepatocytes in primary culture. Proc. Natl. Acad. Sci. U. S. A. 86, 6489–6493.

    Article  Google Scholar 

  24. Zarnegar R., Michalopoulo M. 1989. Purification and biological characterization of human hepatopoietin A, a polypeptide growth factor for hepatocytes. Cancer Res. 49, 3314–3320.

    PubMed  CAS  Google Scholar 

  25. Stoker M., Perriman M. 1985. An epithelial scatter factor released by embryo fibroblasts. J. Cell. Sci. 77, 209–223.

    PubMed  CAS  Google Scholar 

  26. Stoker M., Gherardi E., Perryman M., Gray J. 1987. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature. 327, 239–242.

    Article  PubMed  CAS  Google Scholar 

  27. Gumbiner B. 1992. Epithelial morphogenesis. Cell. 69, 385–387.

    Article  PubMed  CAS  Google Scholar 

  28. Prat M., Narsimhan R., Crepaldi T., Nicotra M., Natali P., Gomogio P. 1991. The receptor encoded by the human c-met oncogene is expressed in hepatocytes, epithelial cells and solid tumors. Int. J. Cancer. 49, 323–328.

    Article  PubMed  CAS  Google Scholar 

  29. Razban V., Sahebqadam Lotfi A., Soleimani M., Ahmadi H., Massumi M., Khajeh S., Ghaedi M., Arjmand S., Najavand S., Khoshdel A. 2012. HIF-1a over-expression induces angiogenesis in mesenchymal stem cells. BioResearch. 1(4), 174–183.

    CAS  Google Scholar 

  30. Razmkhah M., Jaberipour M., Safaei A., Talei A., Erfani N., Ghaderi A. 2012. Chemokine and chemokine receptors: A comparative study between metastatic and nonmetastatic lymph nodes in breast cancer patients. Eur. Cytokine Netw. 23(3), 72–77.

    PubMed  CAS  Google Scholar 

  31. Ogunwobi O., Puszyk W., Dong H., Liu C. 2013. Epigenetic upregulation of HGF and c-Met drives metastasis in hepatocellular carcinoma. PLoS ONE. 8(5), e63765.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Zou Y., Kottmann A., Kuroda M., Taniuchi I., Littman D. 1998. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature. 93(6685), 595–599.

    Article  Google Scholar 

  33. Albert S., Riveiro M., Halimi C., Hourseau M., Couvelard A., Serova M., Barry B., Raymond E., Faivre S. 2013. Focus on the role of the CXCL12/CXCR4 chemokine axis in head and neck squamous cell carcinoma. Head Neck. doi 10.1002/hed.23217

  34. Pal’tsev M.A. 2009. Biologiya stvolovykh kletok i kletochnye tekhnologii (Stem Cell Biology and Cell Technologies). Moscow: Meditsina.

    Google Scholar 

  35. Hannelien V., Karel G., Damme V., Sofie S. 2012. The role of CXC chemokines in the transition of chronic inflammation to esophageal and gastric cancer. Biochim. Biophys. Acta. 1825, 117–129.

    PubMed  Google Scholar 

  36. Otani Y., Kijima T., Kohmo S., Oishi S., Minami T., Nagatomo I., Takahashi R., Hirata H., Suzuki M. 2012. Suppression of metastases of small cell lung cancer cells in mice by a peptidic CXCR4 inhibitor TF14016. FEBS Lett. 586, 3639–3644.

    Article  PubMed  CAS  Google Scholar 

  37. Heazlewood S., Neaves R., Williams B., Haylock D., Adams T., Nilsson S. 2013. Megakaryocytes co-localize with hemopoietic stem cells and release cytokines that up-regulate stem cell proliferation. Stem Cell Res. 11(2), 782–792.

    Article  PubMed  CAS  Google Scholar 

  38. Li L., Neaves W. 2006. Normal stem cells and cancer stem cells: The niche matters. Cancer Res. 66, 4553–4557.

    Article  PubMed  CAS  Google Scholar 

  39. Reuter S., Gupta S., Chaturvedi M., Aggarwal B. 2010. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 49(11), 1603–1616.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Chaffer C., Brueckmann I., Scheel C., Kaestlia A., Wiggins P., Rodriguesa L., Brooksa M., Reinhardt F., Polyakc Y., Arendt L., Kuperwasser C., Bierie B., Weinberg R. 2011. Normal and neoplastic non stem cells can spontaneously convert to a stem-like state. Proc. Natl. Acad. Sci. U. S. A. 108(19), 7950–7955.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Carina V., Zito G., Pizzolanti G., Richiusa P., Criscimanna A., Rodolico V., Tomasello L., Pitrone M., Arancio W., Giordano C. 2013. Multiple pluripotent stem cell markers in human anaplastic thyroid cancer: The putative upstream role of SOX2. Thyroid. 23(7), 829–837.

    Article  PubMed  CAS  Google Scholar 

  42. Mimeault M., Batra S. 2013. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J. Cell Mol. Med. 17(1), 30–54.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Borrull A., Ghislin S., Deshayes F., Lauriol J., AlcaideLoridan C., Middendorp S. 2012. Nanog and Oct4 overexpression increases motility and transmigration of melanoma cells. J. Cancer Res. Clin. Oncol. 138, 1145–1154.

    Article  PubMed  CAS  Google Scholar 

  44. Chiou S., Wang M., Chou Y., Chen C., Hong C., Hsieh W. 2010. Coexpression of oct4 and nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res. 70(24), 10433–10444.

    Article  PubMed  CAS  Google Scholar 

  45. Ben-Porath I., Thomson M., Carey V., Ge R., Bell G., Regev A. 2008. An embryonic stem cell like gene expression signature in poorly differentiated aggressive human tumors. Nature Genet. 40(5), 499–507.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Duda D., Jain R. 2010. Pre-metastatic lung “niche”: Is VEGFR1 activation required? Cancer Res. 70(14), 5670–5673.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Bustelo X. 2012. Intratumoral stages of metastatic cells: A synthesis of ontogeny, Rho/RacGTPases, epithelialmesenchymal transitions, and more. Bioessays. 34, 748–759.

    Article  PubMed  CAS  Google Scholar 

  48. Greenbaum A., Hsu Y., Day R., Schuettpelz L., Christopher M., Borgerding J., Nagasawa T., Link D. 2013. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature. 495(7440), 227–230.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Kulbe H., Levinson N., Balkwill F., Wilsoni J. 2004. The chemokine network in cancer: Much more than directing cell movement. Int. J. Dev. Biol. 48, 489–496.

    Article  PubMed  CAS  Google Scholar 

  50. Li Y., Laterra J. 2012. Cancer stem cells: Distinct entities or dynamically regulated phenotypes? Cancer Res. 72(3), 576–580.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Talmadge J. 2007. Clonal selection of metastasis within the life history of a tumor. Cancer Res. 67, 11471–11475.

    Article  PubMed  CAS  Google Scholar 

  52. Borovski T., Sousa F., Melo E., Vermeulen L. 2011. Cancer stem cell niche: The place to be. Cancer Res. 71(3), 634–639.

    Article  PubMed  CAS  Google Scholar 

  53. Okajama M., Kokura S., Ishikawa T., Mizushima K., Tsuchiya R., Matsuyama T., Adachi S., Okajama T., Sakamoto N. 2013. Anoxia/reoxygenation induces epithelial-mesenchymal transition in human colon cancer cell lines. Oncol. Rep. 29, 2311–2317.

    Google Scholar 

  54. Rofstad E., Galappathi K., Mathiesen B. 2007. Fluctuating and diffusion-limited hypoxia in hypoxiainduced metastasis. Clin. Cancer Res. 13, 1971–1978.

    Article  PubMed  CAS  Google Scholar 

  55. Finger E., Giaccia A. 2010. Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metast. Rev. 29, 285–293.

    Article  CAS  Google Scholar 

  56. Marignol L., Rivera-Figueroa K., Lynch T., Hollywood D. 2013. Hypoxia, notch signalling, and prostate cancer. Nature Rev. Urol. 10(7), 405–413.

    Article  CAS  Google Scholar 

  57. Arvidsson Y., Bergstrom A., Arvidsson L., Kristiansson E., Ahlman H., Nilsson O. 2010. Hypoxia stimulates CXCR4 signalling in ileal carcinoids. Endocr. Relat. Cancer. 17(2), 303–316.

    Article  PubMed  CAS  Google Scholar 

  58. Holmes K., Roberts O., Thomas A., Cross M. 2007. Vascular endothelial growth factor receptor-2: Structure, function, intracellular signalling and therapeutic inhibition. Cell. Signalling. 19, 2003–2012.

    Article  PubMed  CAS  Google Scholar 

  59. Kaplan R., Rafii S., Lyden D. 2006. Preparing the “soil”: The premetastatic niche. Cancer Res. 66, 11089–11093.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Munnink O., Tamas K., Hooge M., Vedelaar S., Timmer-Bosscha H. 2013. Placental growth factor (PlGF): Specific uptake in tumor microenvironment of 89Zrlabeled PlGF antibody RO5323441. J. Nucl. Med. 54, 929–935.

    Article  Google Scholar 

  61. Fazilaty H., Gardaneh M., Bahrami T., Salmaninejad A., Behnam B. 2013. Crosstalk between breast cancer stem cells and metastatic niche: Emerging molecular metastasis pathway? Tumour Biol. 34(4), 2019–2030.

    Article  PubMed  CAS  Google Scholar 

  62. Axelson H., Fredlund E., Ovenberger M., Landberg G., Pahlman S. 2005. Induced dedifferentiation of tumor cells: A mechanism behind heterogeneity and aggressiveness of solid tumors. Semin. Cell Dev. Biol. 16, 554–563.

    Article  PubMed  CAS  Google Scholar 

  63. Cannito S., Novo E., Compagnone A., Valfrè di Bonzo L., Busletta C., Zamara E., Paternostro C., Povero D., Bandino A., Bozzo F., Cravanzola C., Bravoco V., Colombatto S., Parola M. 2008. Redox mechanisms switch on hypoxia-dependent epithelial-mesenchymal transition in cancer cells. Carcinogenesis. 29(12), 2267–2278.

    Article  PubMed  CAS  Google Scholar 

  64. Alexandrova A., Kopnin P., Vasiliev J., Kopnin B. 2006. ROS up-regulation mediates Ras-induced changes of cell morphology and motility. Exp. Cell Res. 31, 2066–2073.

    Article  Google Scholar 

  65. Erler J., Giaccia A. 2006. Lysyl oxidase mediates hypoxic control of metastasis. Cancer Res. 66(21), 10238–10241.

    Article  PubMed  CAS  Google Scholar 

  66. Payne L., Fogelgren B., Hess R. 2006. Lysyl oxidase regulates breast cancer cell migration and adhesion through a hydrogen peroxide-mediated mechanism. Cancer Res. 65, 11429–11436.

    Article  Google Scholar 

  67. Fil’chenkov A. 2009. Lymphangiogenesis and tumor metstasis. Onkologiya (Kiev). 11(2), 94–103.

    Google Scholar 

  68. Shekhani M., Jayanthy A., Maddodi N., Seta V. 2013. Cancer stem cells and tumor transdifferentiation: Implications for novel therapeutic strategies. J. Stem Cell. 2(1), 52–61.

    CAS  Google Scholar 

  69. Hirschmann-Jax C., Foster A., Wulf G., Nuchtern J., Jax T., Gobel U., Goodell M., Brenner M. 2004. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc. Natl. Acad. Sci. U. S. A. 101(39), 14228–14233.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Hirschmann-Jax C., Foster A., Wulf G., Goodell M., Brenner M. 2005. A distinct “side population” of cells in human tumor cells: Implications for tumor biology and therapy. Cell Cycle. 4(2), 203–205.

    Article  PubMed  CAS  Google Scholar 

  71. Palomäi S., Pietilä M., Laitinen S., Pesälä J., Sormunen R., Lehenkari P., Koivunen P. 2013. HIF-1α is upregulated in human mesenchymal stem cells. Stem Cells. 31(9), 1902–1909.

    Article  Google Scholar 

  72. Abelev G.I. 1989. Alpha-fetoprotein: 25 years of study. Tumour Biol. 10(2), 63–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Alexandrova.

Additional information

Original Russian Text © A.S. Chikina, A.Yu. Alexandrova, 2014, published in Molekulyarnaya Biologiya, 2014, Vol. 48, No. 2, pp. 195–213.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chikina, A.S., Alexandrova, A.Y. The cellular mechanisms and regulation of metastasis formation. Mol Biol 48, 165–180 (2014). https://doi.org/10.1134/S0026893314020046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893314020046

Keywords

Navigation