Skip to main content
Log in

Transcription-controlling regulatory elements of the eukaryotic genome

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The eukaryotic genomic regulatory elements that control transcription are considered. The review describes the functional anatomy of tissue-specific and housekeeping gene promoters, current methods to predict and to identify the enhancers, and the role insulators play in enhancer-promoter communication and maintenance of the epigenetic status of genome domains. The relationship between the topology of interphase chromatin and the regulation of transcription is outlined. Particular attention is paid to recent data obtained via high-throughput sequencing of primary transcripts and genome-wide analysis of histone modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BREd:

downstream TFIIB recognition element

BREu:

upstream TFIIB recognition element

DPE:

downstream promoter element

DRE:

DNA replication-related element

Inr:

transcription initiator

LCR:

locus control region

PRE:

Polycomb response element

TBP:

TATA-binding protein

References

  1. Gvozdev V.A. 2013. Regulatory small RNAs. Biochemistry (Moscow). 78, 561.

    CAS  PubMed  Google Scholar 

  2. Rogaev E.I., Borinskaia S.A., Islamgulov D.V., Grigorenko A.P. 2008. Human microRNA in norm and pathology. Mol. Biol. (Moscow). 42, 668–680.

    CAS  Google Scholar 

  3. Shatskikh A.S., Gvozdev V.A. 2013. Heterochromatin formation and transcription in relation to trans-inactivation of genes and their spatial organization in the nucleus. Biochemistry (Moscow). 78, 603–612.

    CAS  PubMed  Google Scholar 

  4. Smale S.T., Kadonaga J.T. 2003. The RNA polymerase II core promoter. Annu. Rev. Biochem. 72, 449–479.

    CAS  PubMed  Google Scholar 

  5. Juven-Gershon T., Kadonaga J.T. 2010. Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev. Biol. 339, 225–229.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Sandelin A., Carninci P., Lenhard B., Ponjavic J., Hayashizaki Y., Hume D.A. 2007. Mammalian RNA polymerase II core promoters: Insights from genomewide studies. Nat. Rev. Genet. 8, 424–436.

    CAS  PubMed  Google Scholar 

  7. Saxonov S., Berg P., Brutlag D.L. 2006. A genomewide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl. Acad. Sci. U. S. A. 103, 1412–1417.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Kawaji H., Frith M.C., Katayama S., Sandelin A., Kai C., Kawai J., Carninci P., Hayashizaki Y. 2006. Dynamic usage of transcription start sites within core promoters. Genome Biol. 7, R118.

    PubMed Central  PubMed  Google Scholar 

  9. Carninci P., Sandelin A., Lenhard B., Katayama S., Shimokawa K., Ponjavic J., Semple C.A., Taylor M.S., Engstrom P.G., Frith M.C., Forrest A.R., Alkema W.B., Tan S.L., Plessy C., Kodzius R., Ravasi T., Kasukawa T., Fukuda S., Kanamori-Katayama M., Kitazume Y., Kawaji H., Kai C., Nakamura M., Konno H., Nakano K., Mottagui-Tabar S., Arner P., Chesi A., Gustincich S., Persichetti F., Suzuki H., Grimmond S.M., Wells C.A., Orlando V., Wahlestedt C., Liu E.T., Harbers M., Kawai J., Bajic V.B., Hume D.A., Hayashizaki Y. 2006. Genome-wide analysis of mammalian promoter architecture and evolution. Nat. Genet. 38, 626–635.

    CAS  PubMed  Google Scholar 

  10. Venters B.J., Pugh B.F. 2009. A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome. Genome Res. 19, 360–371.

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Workman J.L. 2006. Nucleosome displacement in transcription. Genes Dev. 20, 2009–2017.

    CAS  PubMed  Google Scholar 

  12. Ponjavic J., Lenhard B., Kai C., Kawai J., Carninci P., Hayashizaki Y., Sandelin A. 2006. Transcriptional and structural impact of TATA-initiation site spacing in mammalian core promoters. Genome Biol. 7, R78.

    PubMed Central  PubMed  Google Scholar 

  13. Lenhard B., Sandelin A., Carninci P. 2012. Metazoan promoters: Emerging characteristics and insights into transcriptional regulation. Nat. Rev. Genet. 13, 233–245.

    CAS  PubMed  Google Scholar 

  14. Gagniuc P., Ionescu-Tirgoviste C. 2012. Eukaryotic genomes may exhibit up to 10 generic classes of gene promoters. BMC Genomics. 13, 512.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Koyanagi K.O., Hagiwara M., Itoh T., Gojobori T., Imanishi T. 2005. Comparative genomics of bidirectional gene pairs and its implications for the evolution of a transcriptional regulation system. Gene. 353, 169–176.

    CAS  PubMed  Google Scholar 

  16. Takai D., Jones P.A. 2004. Origins of bidirectional promoters: computational analyses of intergenic distance in the human genome. Mol. Biol. Evol. 21, 463–467.

    CAS  PubMed  Google Scholar 

  17. Trinklein N.D., Aldred S.F., Hartman S.J., Schroeder D.I., Otillar R.P., Myers R.M. 2004. An abundance of bidirectional promoters in the human genome. Genome Res. 14, 62–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Orekhova A.S., Rubtsov P.M. 2013. Bidirectional promoters in the transcription of mammalian genomes. Biochemistry (Moscow). 78, 335–341.

    CAS  PubMed  Google Scholar 

  19. Seila A.C., Calabrese J.M., Levine S.S., Yeo G.W., Rahl P.B., Flynn R.A., Young R.A., Sharp P.A. 2008. Divergent transcription from active promoters. Science. 322, 1849–1851.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Taft R.J., Glazov E.A., Cloonan N., Simons C., Stephen S., Faulkner G.J., Lassmann T., Forrest A.R., Grimmond S.M., Schroder K., Irvine K., Arakawa T., Nakamura M., Kubosaki A., Hayashida K., Kawazu C., Murata M., Nishiyori H., Fukuda S., Kawai J., Daub C.O., Hume D.A., Suzuki H., Orlando V., Carninci P., Hayashizaki Y., Mattick J.S. 2009. Tiny RNAs associated with transcription start sites in animals. Nat. Genet. 41, 572–578.

    CAS  PubMed  Google Scholar 

  21. Core L.J., Waterfall J.J., Lis J.T. 2008. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science. 322, 1845–1848.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Randise-Hinchliff C.E., Brickner J.H. 2012. A new direction for gene looping. Dev. Cell. 23, 919–921.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Han J., Kim D., Morris K.V. 2007. Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells. Proc. Natl. Acad. Sci. U. S. A. 104, 12422–12427.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Tomikawa J., Shimokawa H., Uesaka M., Yamamoto N., Mori Y., Tsukamura H., Maeda K., Imamura T. 2011. Single-stranded noncoding RNAs mediate local epigenetic alterations at gene promoters in rat cell lines. J. Biol. Chem. 286, 34788–34799.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Lepoivre C., Belhocine M., Bergon A., Griffon A., Yammine M., Vanhille L., Zacarias-Cabeza J., Garibal M.A., Koch F., Maqbool M.A., Fenouil R., Loriod B., Holota H., Gut M., Gut I., Imbert J., Andrau J.C., Puthier D., Spicuglia S. 2013. Divergent transcription is associated with promoters of transcriptional regulators. BMC Genomics. 14, 914.

    PubMed Central  PubMed  Google Scholar 

  26. Sigova A.A., Mullen A.C., Molinie B., Gupta S., Orlando D.A., Guenther M.G., Almada A.E., Lin C., Sharp P.A., Giallourakis C.C., Young R.A. 2013. Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 110, 2876–2881.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Soboleva T.A., Nekrasov M., Ryan D.P., Tremethick D.J. 2014. Histone variants at the transcription start site. Trends Genet. 30, 199–209.

    CAS  PubMed  Google Scholar 

  28. Schneider R., Bannister A.J., Myers F.A., Thorne A.W., Crane-Robinson C., Kouzarides T. 2004. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat. Cell Biol. 6, 73–77.

    CAS  PubMed  Google Scholar 

  29. Rando O.J. 2007. Chromatin structure in the genomics era. Trends Genet. 23, 67–73.

    CAS  PubMed  Google Scholar 

  30. Rando O.J. 2012. Combinatorial complexity in chromatin structure and function: Revisiting the histone code. Curr. Opin. Genet. Dev. 22, 148–155.

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Chen Y., Jorgensen M., Kolde R., Zhao X., Parker B., Valen E., Wen J., Sandelin A. 2011. Prediction of RNA polymerase II recruitment, elongation and stalling from histone modification data. BMC Genomics. 12, 544.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Banerji J., Rusconi S., Schaffner W. 1981. Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell. 27, 299–308.

    CAS  PubMed  Google Scholar 

  33. Picard D., Schaffner W. 1983. Correct transcription of a cloned mouse immunoglobulin gene in vivo. Proc. Natl. Acad. Sci. U. S. A. 80, 417–421.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Gillies S.D., Morrison S.L., Oi V.T., Tonegawa S. 1983. A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene. Cell. 33, 717–728.

    CAS  PubMed  Google Scholar 

  35. Heintzman N.D., Hon G.C., Hawkins R.D., Kheradpour P., Stark A., Harp L.F., Ye Z., Lee L.K., Stuart R.K., Ching C.W., Ching K.A., Antosiewicz-Bourget J.E., Liu H., Zhang X., Green R.D., Lobanenkov V.V., Stewart R., Thomson J.A., Crawford G.E., Kellis M., Ren B. 2009. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature. 459, 108–112.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Symmons O., Uslu V.V., Tsujimura T., Ruf S., Nassari S., Schwarzer W., Ettwiller L., Spitz F. 2014. Functional and topological characteristics of mammalian regulatory domains. Genome Res. 24, 390–400.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Nechaev S., Adelman K. 2011. Pol II waiting in the starting gates: Regulating the transition from transcription initiation into productive elongation. Biochim. Biophys. Acta. 1809, 34–45.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Adelman K., Lis J.T. 2012. Promoter-proximal pausing of RNA polymerase II: Emerging roles in metazoans. Nat. Rev. Genet. 13, 720–731.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Boettiger A.N., Ralph P.L., Evans S.N. 2011. Transcriptional regulation: Effects of promoter proximal pausing on speed, synchrony and reliability. PLoS Comput. Biol. 7, e1001136.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Sawado T., Halow J., Bender M.A., Groudine M. 2003. The beta-globin locus control region (LCR) functions primarily by enhancing the transition from transcription initiation to elongation. Genes Dev. 17, 1009–1018.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Salem T., Gomard T., Court F., Moquet-Torcy G., Brockly F., Forne T., Piechaczyk M. 2013. Chromatin loop organization of the junb locus in mouse dendritic cells. Nucleic Acids Res. 41, 8908–8925.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Kim T.K., Hemberg M., Gray J.M., Costa A.M., Bear D.M., Wu J., Harmin D.A., Laptewicz M., Barbara-Haley K., Kuersten S., Markenscoff-Papadimitriou E., Kuhl D., Bito H., Worley P.F., Kreiman G., Greenberg M.E. 2010. Widespread transcription at neuronal activity-regulated enhancers. Nature. 465, 182–187.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. De Santa F., Barozzi I., Mietton F., Ghisletti S., Polletti S., Tusi B.K., Muller H., Ragoussis J., Wei C.L., Natoli G. 2010. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol. 8, e1000384.

    PubMed Central  PubMed  Google Scholar 

  44. Mousavi K., Zare H., Koulnis M., Sartorelli V. 2014. The emerging roles of eRNAs in transcriptional regulatory networks. RNA Biol. 11, 106–110.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Natoli G., Andrau J.C. 2012. Noncoding transcription at enhancers: General principles and functional models. Annu. Rev. Genet. 46, 1–19.

    CAS  PubMed  Google Scholar 

  46. Li W., Notani D., Ma Q., Tanasa B., Nunez E., Chen A.Y., Merkurjev D., Zhang J., Ohgi K., Song X., Oh S., Kim H.S., Glass C.K., Rosenfeld M.G. 2013. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature. 498, 516–520.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Lam K.N., van Bakel H., Cote A.G., van der Ven A., Hughes T.R. 2011. Sequence specificity is obtained from the majority of modular C2H2 zinc-finger arrays. Nucleic Acids Res. 39, 4680–4690.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Mousavi K., Zare H., Dell’orso S., Grontved L., Gutierrez-Cruz G., Derfoul A., Hager G.L., Sartorelli V. 2013. eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol. Cell. 51, 606–617.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Melo C.A., Drost J., Wijchers P.J., van de Werken H., de Wit E., Oude Vrielink J.A., Elkon R., Melo S.A., Leveille N., Kalluri R., de Laat W., Agami R. 2013. eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol. Cell. 49, 524–535.

    CAS  PubMed  Google Scholar 

  50. Kowalczyk M.S., Hughes J.R., Garrick D., Lynch M.D., Sharpe J.A., Sloane-Stanley J.A., McGowan S.J., De Gobbi M., Hosseini M., Vernimmen D., Brown J.M., Gray N.E., Collavin L., Gibbons R.J., Flint J., Taylor S., Buckle V.J., Milne T.A., Wood W.G., Higgs D.R. 2012. Intragenic enhancers act as alternative promoters. Mol. Cell. 45, 447–458.

    CAS  PubMed  Google Scholar 

  51. Koch F., Fenouil R., Gut M., Cauchy P., Albert T.K., Zacarias-Cabeza J., Spicuglia S., de la Chapelle A.L., Heidemann M., Hintermair C., Eick D., Gut I., Ferrier P., Andrau J.C. 2011. Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nat. Struct. Mol. Biol. 18, 956–963.

    CAS  PubMed  Google Scholar 

  52. Marques A.C., Hughes J., Graham B., Kowalczyk M.S., Higgs D.R., Ponting C.P. 2013. Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs. Genome Biol. 14, R131.

    PubMed Central  PubMed  Google Scholar 

  53. Dekker J., Rippe K., Dekker M., Kleckner N. 2002. Capturing chromosome conformation. Science. 295, 1306–1311.

    CAS  PubMed  Google Scholar 

  54. de Laat W., Grosveld F. 2003. Spatial organization of gene expression: The active chromatin hub. Chromosome Res. 11, 447–459.

    PubMed  Google Scholar 

  55. de Laat W., Klous P., Kooren J., Noordermeer D., Palstra R.J., Simonis M., Splinter E., Grosveld F. 2008. Three-dimensional organization of gene expression in erythroid cells. Curr. Top. Dev. Biol. 82, 117–139.

    PubMed  Google Scholar 

  56. Tolhuis B., Palstra R.J., Splinter E., Grosveld F., de Laat W. 2002. Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol. Cell. 10, 1453–1465.

    CAS  PubMed  Google Scholar 

  57. Gong F., Sun L., Wang Z., Shi J., Li W., Wang S., Han X., Sun Y. 2011. The BCL2 gene is regulated by a special AT-rich sequence binding protein 1-mediated long range chromosomal interaction between the promoter and the distal element located within the 3′-UTR. Nucleic Acids Res. 39, 4640–4652.

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Gheldof N., Smith E.M., Tabuchi T.M., Koch C.M., Dunham I., Stamatoyannopoulos J.A., Dekker J. 2010. Cell-type-specific long-range looping interactions identify distant regulatory elements of the CFTR gene. Nucleic Acids Res. 38, 4325–4336.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. He B., Chen C., Teng L., Tan K. 2014. Global view of enhancer-promoter interactome in human cells. Proc. Natl. Acad. Sci. U. S. A. 111, E2191–E2199.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. DeMare L.E., Leng J., Cotney J., Reilly S.K., Yin J., Sarro R., Noonan J.P. 2013. The genomic landscape of cohesin-associated chromatin interactions. Genome Res. 23, 1224–1234.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Chien R., Zeng W., Kawauchi S., Bender M.A., Santos R., Gregson H.C., Schmiesing J.A., Newkirk D.A., Kong X., Ball A.R., Jr., Calof A.L., Lander A.D., Groudine M.T., Yokomori K. 2011. Cohesin mediates chromatin interactions that regulate mammalian betaglobin expression. J. Biol. Chem. 286, 17870–17878.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Deng W., Lee J., Wang H., Miller J., Reik A., Gregory P.D., Dean A., Blobel G.A. 2012. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell. 149, 1233–1244.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Nolis I.K., McKay D.J., Mantouvalou E., Lomvardas S., Merika M., Thanos D. 2009. Transcription factors mediate long-range enhancer-promoter interactions. Proc. Natl. Acad. Sci. U. S. A. 106, 20222–20227.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Kagey M.H., Newman J.J., Bilodeau S., Zhan Y., Orlando D.A., van Berkum N.L., Ebmeier C.C., Goossens J., Rahl P.B., Levine S.S., Taatjes D.J., Dekker J., Young R.A. 2010. Mediator and cohesin connect gene expression and chromatin architecture. Nature. 467, 430–435.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Gavrilov A.A., Razin S.V., Iarovaia O.V. 2012. C-methods to study 3D organization of the eukaryotic genome. Biopolymers Cell. 28, 245–251.

    CAS  Google Scholar 

  66. Gavrilov A.A., Chetverina H.V., Chermnykh E.S., Razin S.V., Chetverin A.B. 2014. Quantitative analysis of genomic element interactions by molecular colony technique. Nucleic Acids Res. 42, e36.

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Eijkelenboom A., Mokry M., de Wit E., Smits L.M., Polderman P.E., van Triest M.H., van Boxtel R., Schulze A., de Laat W., Cuppen E., Burgering B.M. 2013. Genome-wide analysis of FOXO3 mediated transcription regulation through RNA polymerase II profiling. Mol. Systems Biol. 9, 638.

    Google Scholar 

  68. Hakim O., Sung M.H., Voss T.C., Splinter E., John S., Sabo P.J., Thurman R.E., Stamatoyannopoulos J.A., de Laat W., Hager G.L. 2011. Diverse gene reprogramming events occur in the same spatial clusters of distal regulatory elements. Genome Res. 21, 697–706.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Jin F., Li Y., Dixon J.R., Selvaraj S., Ye Z., Lee A.Y., Yen C.A., Schmitt A.D., Espinoza C.A., Ren B. 2013. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature. 503, 290–294.

    CAS  PubMed  Google Scholar 

  70. Herz H.M., Mohan M., Garruss A.S., Liang K., Takahashi Y.H., Mickey K., Voets O., Verrijzer C.P., Shilatifard A. 2012. Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev. 26, 2604–2620.

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Creyghton M.P., Cheng A.W., Welstead G.G., Kooistra T., Carey B.W., Steine E.J., Hanna J., Lodato M.A., Frampton G.M., Sharp P.A., Boyer L.A., Young R.A., Jaenisch R. 2010. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. Sci. U. S. A. 107, 21931–21936.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Spicuglia S., Vanhille L. 2012. Chromatin signatures of active enhancers. Nucleus. 3, 126–131.

    PubMed Central  PubMed  Google Scholar 

  73. Rada-Iglesias A., Bajpai R., Swigut T., Brugmann S.A., Flynn R.A., Wysocka J. 2011. A unique chromatin signature uncovers early developmental enhancers in humans. Nature. 470, 279–283.

    CAS  PubMed  Google Scholar 

  74. Zentner G.E., Tesar P.J., Scacheri P.C. 2011. Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res. 21, 1273–1283.

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Shlyueva D., Stampfel G., Stark A. 2014. Transcriptional enhancers: From properties to genome-wide predictions. Nat. Rev. Genet. 15, 272–286.

    CAS  PubMed  Google Scholar 

  76. Consortium E.P., Bernstein B.E., Birney E., Dunham I., Green E.D., Gunter C., Snyder M. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature. 489, 57–74.

    Google Scholar 

  77. Arnold C.D., Gerlach D., Stelzer C., Boryn L.M., Rath M., Stark A. 2013. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science. 339, 1074–1077.

    CAS  PubMed  Google Scholar 

  78. Chen R.A., Down T.A., Stempor P., Chen Q.B., Egelhofer T.A., Hillier L.W., Jeffers T.E., Ahringer J. 2013. The landscape of RNA polymerase II transcription initiation in C. elegans reveals promoter and enhancer architectures. Genome Res. 23, 1339–1347.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Li Q., Peterson K.R., Fang X., Stamatoyannopoulos G. 2002. Locus control regions. Blood. 100, 3077–3086.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Li Q., Zhou B., Powers P., Enver T., Stamatoyannopoulos G. 1990. β-Globin locus activations regions: conservation of organization, structure and function. Proc. Natl. Acad. Sci. U. S. A. 87, 8207–8211.

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Grosveld F., van Assandelt G.B., Greaves D.R., Kollias B. 1987. Position-independent, high-level expression of the human b-globin gene in transgenic mice. Cell. 51, 975–985.

    CAS  PubMed  Google Scholar 

  82. Kioussis D., Festenstein R. 1997. Locus control regions: Overcoming heterochromatin-induced gene inactivation in mammals. Curr. Opin. Genet. Dev. 7, 614–619.

    CAS  PubMed  Google Scholar 

  83. Forrester W.C., Epner E., Driscoll M.C., Enver T., Brice M., Papayannopoulou T., Groudine M. 1990. A deletion of the human β-globin locus activation region causes a major alteration in chromatin structure and replication across the entire β-globin locus. Genes Dev. 4, 1637–1649.

    CAS  PubMed  Google Scholar 

  84. Bender M.A., Bulger M., Close J., Groudine M. 2000. β-Globin gene switching and DNase I sensitivity of the endogenous β-globin locus in mice do not require the locus control region. Mol. Cell. 5, 387–393.

    CAS  PubMed  Google Scholar 

  85. Schubeler D., Groudine M., Bender M.A. 2001. The murine beta-globin locus control region regulates the rate of transcription but not the hyperacetylation of histones at the active genes. Proc. Natl. Acad. Sci. U. S. A. 98, 11432–11437.

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Higgs D.R., Wood W.G., Jarman A.P., Sharpe J., Lida J., Pretorius I.-M., Ayyub H. 1990. A major positive regulatory region located far upstream of the human α-globin gene locus. Genes Dev. 4, 1588–1601.

    CAS  PubMed  Google Scholar 

  87. Talbot D., Descombes P., Schibler U. 1994. The 5′ flanking region of the rat LAP (C/EBPb) gene can direct high-level, position-independent, copy number-dependent expression on multiple tissues in transgenic mice. Nucleic Acids Res. 22, 756–766.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Porter S.D., Meyer S.J. 1994. A distal tirosinase upstream element stimulates gene expression in neutral-crest-derived melanocytes of transgenic mice: Position-independent and mosaic expression. Development. 120, 2103–2111.

    CAS  PubMed  Google Scholar 

  89. Palmiter R.D., Sandgren E.P., Koeller D.M., Brinster R.L. 1993. Distal regulatory elements from the mouse metallothionein locus stimulate gene expression in transgenic mice. Mol. Cell. Biol. 13, 5266–5275.

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Diaz P., Cado D., Winoto A. 1994. A locus control region in the T cell receptor alpha/delta locus. Immunity. 1, 207–217.

    CAS  PubMed  Google Scholar 

  91. Whyte W.A., Orlando D.A., Hnisz D., Abraham B.J., Lin C.Y., Kagey M.H., Rahl P.B., Lee T.I., Young R.A. 2013. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 153, 307–319.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Hnisz D., Abraham B.J., Lee T.I., Lau A., Saint-Andre V., Sigova A.A., Hoke H.A., Young R.A. 2013. Super-enhancers in the control of cell identity and disease. Cell. 155, 934–947.

    CAS  PubMed  Google Scholar 

  93. Brand A.H., Breeden L., Abraham J., Sternglanz R., Nasmyth K. 1985. Characterization of a “silencer” in yeast: A DNA sequence with properties opposite to those of a transcriptional enhancer. Cell. 41, 41–48.

    CAS  PubMed  Google Scholar 

  94. Sengupta A.K., Kuhrs A., Muller J. 2004. General transcriptional silencing by a Polycomb response element in Drosophila. Development. 131, 1959–1965.

    CAS  PubMed  Google Scholar 

  95. Muller J., Kassis J.A. 2006. Polycomb response elements and targeting of Polycomb group proteins in Drosophila. Curr. Opin. Genet. Dev. 16, 476–484.

    PubMed  Google Scholar 

  96. Kassis J.A., Brown J.L. 2013. Polycomb group response elements in Drosophila and vertebrates. Adv. Genet. 81, 83–118.

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Reynolds N., O’Shaughnessy A., Hendrich B. 2013. Transcriptional repressors: Multifaceted regulators of gene expression. Development. 140, 505–512.

    CAS  PubMed  Google Scholar 

  98. Schoch H., Abel T. 2014. Transcriptional co-repressors and memory storage. Neuropharmacology. 80, 53–60.

    CAS  PubMed  Google Scholar 

  99. Watson P.J., Fairall L., Schwabe J.W. 2012. Nuclear hormone receptor co-repressors: Structure and function. Mol. Cell. Endocrinol. 348, 440–449.

    CAS  PubMed  Google Scholar 

  100. Battaglia S., Maguire O., Campbell M.J. 2010. Transcription factor co-repressors in cancer biology: Roles and targeting. Int. J. Cancer. 126, 2511–2519.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Friedman J.R., Fredericks W.J., Jensen D.E., Speicher D.W., Huang X.P., Neilson E.G., Rauscher F.J., 3rd. 1996. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 10, 2067–2078.

    CAS  PubMed  Google Scholar 

  102. Groner A.C., Meylan S., Ciuffi A., Zangger N., Ambrosini G., Denervaud N., Bucher P., Trono D. 2010. KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genet. 6, e1000869.

    PubMed Central  PubMed  Google Scholar 

  103. Jones P.L., Shi Y.B. 2003. N-CoR-HDAC corepressor complexes: Roles in transcriptional regulation by nuclear hormone receptors. Curr. Top. Microbiol. Immunol. 274, 237–268.

    CAS  PubMed  Google Scholar 

  104. Wade P.A., Jones P.L., Vermaak D., Veenstra G.J., Imhof A., Sera T., Tse C., Ge H., Shi Y.B., Hansen J.C., Wolffe A.P. 1998. Histone deacetylase directs the dominant silencing of transcription in chromatin: Association with MeCP2 and the Mi-2 chromodomain SWI/SNF ATPase. Cold Spring Harbor Symp. Quant. Biol. 63, 435–445.

    CAS  PubMed  Google Scholar 

  105. Chanda D., Xie Y.B., Choi H.S. 2010. Transcriptional corepressor SHP recruits SIRT1 histone deacetylase to inhibit LRH-1 transactivation. Nucleic Acids Res. 38, 4607–4619.

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Kellum R., Schedl P. 1991. A position-effect assay for boundaries of higher-order chromosomal domains. Cell. 64, 941–950.

    CAS  PubMed  Google Scholar 

  107. Kellum R., Schedl P. 1992. A group of scs elements function as boundaries in enhancer-blocking assay. Mol. Cell. Biol. 12, 2424–2431.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Bell A.C., West A.G., Felsenfeld G. 1999. The protein CTCF is required for the enhancer-blocking activity of vertebrate insulators. Cell. 98, 387–396.

    CAS  PubMed  Google Scholar 

  109. Wendt K.S., Yoshida K., Itoh T., Bando M., Koch B., Schirghuber E., Tsutsumi S., Nagae G., Ishihara K., Mishiro T., Yahata K., Imamoto F., Aburatani H., Nakao M., Imamoto N., Maeshima K., Shirahige K., Peters J.M. 2008. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature. 451, 796–801.

    CAS  PubMed  Google Scholar 

  110. Rubio E.D., Reiss D.J., Welcsh P.L., Disteche C.M., Filippova G.N., Baliga N.S., Aebersold R., Ranish J.A., Krumm A. 2008. CTCF physically links cohesin to chromatin. Proc. Natl. Acad. Sci. U. S. A. 105, 8309–8314.

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Negre N., Brown C.D., Shah P.K., Kheradpour P., Morrison C.A., Henikoff J.G., Feng X., Ahmad K., Russell S., White R.A., Stein L., Henikoff S., Kellis M., White K.P. 2010. A comprehensive map of insulator elements for the Drosophila genome. PLoS Genet. 6, e1000814.

    PubMed Central  PubMed  Google Scholar 

  112. Ahanger S.H., Shouche Y.S., Mishra R.K. 2013. Functional sub-division of the Drosophila genome via chromatin looping: The emerging importance of CP190. Nucleus. 4, 115–122.

    PubMed Central  PubMed  Google Scholar 

  113. Yang J., Corces V.G. 2012. Insulators, long-range interactions, and genome function. Curr. Opin. Genet. Dev. 22, 86–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Pai C.Y., Lei E.P., Ghosh D., Corces V.G. 2004. The centrosomal protein CP190 is a component of the gypsy chromatin insulator. Mol. Cell. 16, 737–748.

    CAS  PubMed  Google Scholar 

  115. Bartkuhn M., Straub T., Herold M., Herrmann M., Rathke C., Saumweber H., Gilfillan G.D., Becker P.B., Renkawitz R. 2009. Active promoters and insulators are marked by the centrosomal protein 190. EMBO J. 28, 877–888.

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Ahanger S.H., Gunther K., Weth O., Bartkuhn M., Bhonde R.R., Shouche Y.S., Renkawitz R. 2014. Ectopically tethered CP190 induces large-scale chromatin decondensation. Sci. Repts. 4, 3917.

    Google Scholar 

  117. Hou C., Zhao H., Tanimoto K., Dean A. 2008. CTCF-dependent enhancer blocking by alternative chromatin loop formation. Proc. Natl. Acad. Sci. U. S. A. 105, 20398–20403.

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Raab J.R., Kamakaka R.T. 2010. Insulators and promoters: Closer than we think. Nat. Rev. Genet. 11, 439–446.

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Phillips-Cremins J.E., Corces V.G. 2013. Chromatin insulators: Linking genome organization to cellular function. Mol. Cell. 50, 461–474.

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Kyrchanova O., Maksimenko O., Stakhov V., Ivlieva T., Parshikov A., Studitsky V.M., Georgiev P. 2013. Effective blocking of the white enhancer requires cooperation between two main mechanisms suggested for the insulator function. PLoS Genet. 9, e1003606.

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Tokuda N., Sasai M., Chikenji G. 2011. Roles of DNA looping in enhancer-blocking activity. Biophys. J. 100, 126–134.

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Kurukuti S., Tiwari V.K., Tavoosidana G., Pugacheva E., Murrell A., Zhao Z., Lobanenkov V., Reik W., Ohlsson R. 2006. CTCF binding at the H19 imprinting control region mediates maternally inherited higherorder chromatin conformation to restrict enhancer access to Igf2. Proc. Natl. Acad. Sci. U. S. A. 103, 10684–10689.

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Van Bortle K., Corces V.G. 2013. The role of chromatin insulators in nuclear architecture and genome function. Curr. Opin. Genet. Dev. 23, 212–218.

    PubMed Central  PubMed  Google Scholar 

  124. Zlatanova J., Caiafa P. 2009. CTCF and its protein partners: Divide and rule?. J. Cell. Sci. 122, 1275–1284.

    CAS  PubMed  Google Scholar 

  125. Ghirlando R., Giles K., Gowher H., Xiao T., Xu Z., Yao H., Felsenfeld G. 2012. Chromatin domains, insulators, and the regulation of gene expression. Biochim. Biophys. Acta. 1819, 644–651.

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Vogelmann J., Valeri A., Guillou E., Cuvier O., Nollmann M. 2011. Roles of chromatin insulator proteins in higher-order chromatin organization and transcription regulation. Nucleus. 2, 358–369.

    PubMed Central  PubMed  Google Scholar 

  127. Dean A. 2011. In the loop: Long range chromatin interactions and gene regulation. Brief Funct. Genomics. 10, 3–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Maksimenko O., Georgiev P. 2014. Mechanisms and proteins involved in long-distance interactions. Front. Genet. 5, 28.

    PubMed Central  PubMed  Google Scholar 

  129. Li H.B., Ohno K., Gui H., Pirrotta V. 2013. Insulators target active genes to transcription factories and polycomb-repressed genes to polycomb bodies. PLoS Genet. 9, e1003436.

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Matzat L.H., Lei E.P. 2014. Surviving an identity crisis: A revised view of chromatin insulators in the genomics era. Biochim. Biophys. Acta. 1839, 203–214.

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Recillas-Targa F., Pikaart M.J., Burgess-Beusse B., Bell A.C., Litt M.D., West A.G., Gaszner M., Felsenfeld G. 2002. Position-effect protection and enhancer blocking by the chicken beta-globin insulator are separable activities. Proc. Natl. Acad. Sci. U. S. A. 99, 6883–6888.

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Chung J.H., Bell A.C., Felsenfeld G. 1997. Characterization of the chicken beta-globin insulator. Proc. Natl. Acad. Sci. U. S. A. 94, 575–580.

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Chung J.H., Whiteley M., Felsenfeld G. 1993. A 5′ element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell. 74, 505–514.

    CAS  PubMed  Google Scholar 

  134. Dickson J., Gowher H., Strogantsev R., Gaszner M., Hair A., Felsenfeld G., West A.G. 2010. VEZF1 elements mediate protection from DNA methylation. PLoS Genet. 6, e1000804.

    PubMed Central  PubMed  Google Scholar 

  135. West A.G., Huang S., Gaszner M., Litt M.D., Felsenfeld G. 2004. Recruitment of histone modifications by USF proteins at a vertebrate barrier element. Mol. Cell. 16, 453–463.

    CAS  PubMed  Google Scholar 

  136. Li X., Wang S., Li Y., Deng C., Steiner L.A., Xiao H., Wu C., Bungert J., Gallagher P.G., Felsenfeld G., Qiu Y., Huang S. 2011. Chromatin boundaries require functional collaboration between the hSET1 and NURF complexes. Blood. 118, 1386–1394.

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Bi X., Broach J.R. 1999. UASrpg can function as a heterochromatin boundary element in yeast. Genes Dev. 13, 1089–1101.

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Ferrari S., Simmen K.C., Dusserre Y., Muller K., Fourel G., Gilson E., Mermod N. 2004. Chromatin domain boundaries delimited by a histone-binding protein in yeast. J. Biol. Chem. 279, 55520–55530.

    CAS  PubMed  Google Scholar 

  139. Litt M.D., Simpson M., Recillas-Targa F., Prioleau M.N., Felsenfeld G. 2001. Transitions in histone acetylation reveal boundaries of three separately regulated neighboring loci. EMBO J. 20, 2224–2235.

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Bruce K., Myers F.A., Mantouvalou E., Lefevre P., Greaves I., Bonifer C., Tremethick D.J., Thorne A.W., Crane-Robinson C. 2005. The replacement histone H2A.Z in a hyperacetylated form is a feature of active genes in the chicken. Nucleic Acids Res. 33, 5633–5639.

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Ma M.K., Heath C., Hair A., West A.G. 2011. Histone crosstalk directed by H2B ubiquitination is required for chromatin boundary integrity. PLoS Genet. 7, e1002175.

    PubMed Central  CAS  PubMed  Google Scholar 

  142. Litt M.D., Simpson M., Gaszner M., Allis C.D., Felsenfeld G. 2001. Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus. Science. 293, 2453–2455.

    CAS  PubMed  Google Scholar 

  143. Heger P., Wiehe T. 2014. New tools in the box: an evolutionary synopsis of chromatin insulators. Trends Genet. 30, 161–171.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Razin.

Additional information

Original Russian Text © S.V. Razin, A.A. Gavrilov, S.V. Ulyanov, 2015, published in Molekulyarnaya Biologiya, 2015, Vol. 49, No. 2, pp. 212–223.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razin, S.V., Gavrilov, A.A. & Ulyanov, S.V. Transcription-controlling regulatory elements of the eukaryotic genome. Mol Biol 49, 185–194 (2015). https://doi.org/10.1134/S0026893315020119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893315020119

Keywords

Navigation