Skip to main content
Log in

Interleukin-6: From molecular mechanisms of signal transduction to physiological properties and therapeutic targeting

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Interleukin-6 (IL-6) is one of the most important proinflammatory cytokines that has a broad spectrum of immunoregulatory properties. The molecular mechanisms of signal transduction of IL-6 and its receptor, which have been previously established, were later supplemented with a concept of trans-signaling. The selective inhibition of this signaling cascade would allow the modulation of the pathological effects of IL-6. Reverse genetics methods helped to establish the physiological functions of IL-6 in normal state and in various diseases, including neoplasias. Therapeutic inhibitors of IL-6 or its receptor are already used to treat several autoimmune diseases; however, the systemic inhibition inevitably also neutralizes the protective functions of this cytokine. It is expected that, in the future, systemic therapy will be replaced by more specific and effective approaches that take into account the peculiarities of molecular signaling pathways in target cells and differences in the function of IL-6 depending on the cell source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taga T., Hibi M., Hirata Y., Yamasaki K., Yasukawa K., Matsuda T., Hirano T., Kishimoto T. 1989. Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell. 58, 573–581.

    Article  CAS  PubMed  Google Scholar 

  2. He G., Dhar D., Nakagawa H., Font-Burgada J., et al. 2013. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell. 155, 384–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grivennikov S., Karin E., Terzic J., et al. 2009. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 15, 103–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eto D., Lao C., Di Toro D., Barnett B., Escobar T.C., Kageyama R., Yusuf I., Crotty S. 2011. IL-21 and IL-6 are critical for different aspects of B cell immunity and redundantly induce optimal follicular helper CD4 T cell (Tfh) differentiation. PLOS ONE. 6, e17739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mattoli S., Marini M., Fasoli A. 1992. Expression of the potent inflammatory cytokines, GM-CSF, IL-6, and IL-8, in bronchial epithelial cells of asthmatic patients. Chest. 101, 27S–29S.

    Article  CAS  PubMed  Google Scholar 

  6. Quintana A., Erta M., Ferrer B., Comes G., Giralt M., Hidalgo J. 2013. Astrocyte-specific deficiency of interleukin-6 and its receptor reveal specific roles in survival, body weight and behavior. Brain Behav. Immun. 27, 162–173.

    Article  CAS  PubMed  Google Scholar 

  7. Samoilova E.B., Horton J.L., Hilliard B., Liu T.-S.T., Chen Y. 1998. IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: Roles of IL-6 in the activation and differentiation of autoreactive T cells. J. Immunol. 161, 6480–6486.

    CAS  PubMed  Google Scholar 

  8. Leech M.D., Barr T.A., Turner D.G., Brown S., O’ Connor R.A., Gray D., Mellanby R.J., Anderton S.M. 2013. Cutting edge: IL-6-dependent autoimmune disease: Dendritic cells as a sufficient, but transient, source. J. Immunol. 190, 881–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barr T.A., Shen P., Brown S., et al. 2012. B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J. Exp. Med. 209, 1001–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Molnarfi N., Schulze-Topphoff U., Weber M.S., et al. 2013. MHC class II-dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies. J. Exp. Med. 210, 2921–2937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tanaka K., Hashizume M., Mihara M., Yoshida H., Suzuki M., Matsumoto Y. 2014. Anti-interleukin-6 receptor antibody prevents systemic bone mass loss via reducing the number of osteoclast precursors in bone marrow in a collagen-induced arthritis model. Clin. Exp. Immunol. 175, 172–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. De Hooge A.S., van De Loo F.A., Arntz O.J., van Den Berg W.B. 2000. Involvement of IL-6, apart from its role in immunity, in mediating a chronic response during experimental arthritis. Am. J. Pathol. 157, 2081–2091.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Thiolat A., Semerano L., Pers Y.M., et al. 2014. Interleukin-6 receptor blockade enhances CD39+ regulatory T cell development in rheumatoid arthritis and in experimental arthritis. Arthritis Rheumatol. 66, 273–283.

    Article  CAS  PubMed  Google Scholar 

  14. Rincon M., Irvin C.G. 2012. Role of IL-6 in asthma and other inflammatory pulmonary diseases. Int. J. Biol. Sci. 8, 1281–1290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qiu Z., Fujimura M., Kurashima K., Nakao S., Mukaida N. 2004. Enhanced airway inflammation and decreased subepithelial fibrosis in interleukin 6-deficient mice following chronic exposure to aerosolized antigen. Clin. Exp. Allergy. 34, 1321–1328.

    Article  CAS  PubMed  Google Scholar 

  16. Doganci A., Eigenbrod T., Krug N., et al. 2005. The IL-6R a chain controls lung CD4+CD25+ Treg development and function during allergic airway inflammation in vivo. J. Clin. Invest. 115, 313–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Matsumoto S., Hara T., Mitsuyama K., et al. 2010. Essential roles of IL-6 trans-signaling in colonic epithelial cells, induced by the IL-6/soluble–IL-6 receptor derived from lamina propria macrophages, on the development of colitis-associated premalignant cancer in a murine model. J. Immunol. 184, 1543–1551.

    Article  CAS  PubMed  Google Scholar 

  18. Becker C., Fantini M.C., Schramm C., et al. 2004. TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity. 21, 491–501.

    Article  CAS  PubMed  Google Scholar 

  19. Bollrath J., Phesse T.J., von Burstin V.A., et al. 2009. Gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell. 15, 91–102.

    Article  CAS  PubMed  Google Scholar 

  20. Putoczki T.L., Thiem S., Loving A., et al. 2013. Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell. 24, 257–271.

    Article  CAS  PubMed  Google Scholar 

  21. Depner S., Lederle W., Gutschalk C., Linde N., Zajonz A., Mueller M.M. 2014. Cell type specific interleukin-6 induced responses in tumor keratinocytes and stromal fibroblasts are essential for invasive growth. Int. J. Cancer. 135, 551–562.

    Article  CAS  PubMed  Google Scholar 

  22. Tanaka T., Narazaki M., Ogata A., Kishimoto T. 2014. A new era for the treatment of inflammatory autoimmune diseases by interleukin-6 blockade strategy. Semin. Immunol. 26, 88–96.

    Article  CAS  PubMed  Google Scholar 

  23. Ueda O., Tateishi H., Higuchi Y., et al. 2013. Novel genetically-humanized mouse model established to evaluate efficacy of therapeutic agents to human interleukin-6 receptor. Sci. Rep. 3, 1196.

  24. Astrakhantseva I.V., Efimov G.A., Drutskaya M.S., Kruglov A.A., Nedospasov S.A. 2014. Modern anticytokine therapy of autoimmune diseases. Biochemistry (Moscow). 79, 1308–1321.

    Article  CAS  Google Scholar 

  25. Efimov G.A., Kruglov A.A., Shvarev D.S., Drutskaya M.S., Nedospasov S.A. 2014. New trends in anti-cytokine therapy. Russ. J. Immunol. 8, 706–710.

    Google Scholar 

  26. Scheller J., Garbers C., Rose-John S. 2014. Interleukin-6: From basic biology to selective blockade of proinflammatory activities. Semin. Immunol. 26, 2–12.

    Article  CAS  PubMed  Google Scholar 

  27. Campbell I.L., Erta M., Lim S.L., Frausto R., May U., Rose-John S., Scheller J., Hidalgo J. 2014. Trans-signaling is a dominant mechanism for the pathogenic actions of interleukin-6 in the brain. J. Neurosci. 34, 2503–2513.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Drutskaya.

Additional information

The article was translated by the authors.

Original Russian Text © M.S. Drutskaya, M.A. Nosenko, K.-S.N. Atretkhany, G.A. Efimov, S.A. Nedospasov, 2015, published in Molekulyarnaya Biologiya, 2015, Vol. 49, No. 6, pp. 937–943.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drutskaya, M.S., Nosenko, M.A., Atretkhany, KS.N. et al. Interleukin-6: From molecular mechanisms of signal transduction to physiological properties and therapeutic targeting. Mol Biol 49, 837–842 (2015). https://doi.org/10.1134/S0026893315060060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893315060060

Keywords

Navigation