Skip to main content
Log in

Low-level laser therapy (LLLT) reduces inflammatory infiltrate and enhances skeletal muscle repair: Histomorphometric parameters

  • Laser Methods in Chemistry, Biology, and Medicine
  • Published:
Laser Physics

Abstract

Low level laser therapy (LLLT) has been suggested as an effective therapeutics in inflammatory processes modulation and tissue repairing. However, there is a lack of studies that analyze the anti-inflammatory effects of the infrared lasers in muscular skeletal injury. The aim of this study was to investigate the effects of low-level laser therapy 904 nm in the repair process of skeletal muscle tissue. Swiss mice were submitted to cryoinjury and divided in test (LLLT-treated) and control groups. Histological sections were stained with hematoxylin-eosin to assess general morphology and inflammatory influx, and Picrossirus to quantify collagen fibers deposition. Our results showed significant reduction in inflammatory infiltrated in irradiated mice after 4 days of treatment compared to control (p = 0.01). After 8 days, the irradiated group showed high levels at regenerating myofibers with significant statistically differences in relation at control group (p < 0.01). Collagen deposition was significantly increased in the final stages of regeneration at test group, when compared with control group (p = 0.05). Our data suggests that LLLT reduces the inflammatory response in the initial stages of injury and accelerates the process of muscular tissue repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. F. Rizzi, J. L. Mauriz, D. S. Freitas Correa, et al., Lasers Surg. Med. 38, 704 (2006).

    Article  Google Scholar 

  2. E. C. Leal Junior, R. A. Lopes-Martins, P. de Almeida, et al., Eur. J. Appl. Physiol. 108, 1083 (2010).

    Article  Google Scholar 

  3. S. B. Charge and M. A. Rudnicki, Physiol. Rev. 84, 209 (2004).

    Article  Google Scholar 

  4. F. Mourkioti and N. Rosenthal, Trends Immunol. 26, 535 (2005).

    Article  Google Scholar 

  5. V. Prisk and J. Huard, Histol. Histopathol. 18, 1243 (2003).

    Google Scholar 

  6. A. M. Barbosa, A. B. Villaverde, L. Guimaraes-Souza, et al., Toxicon. 51, 1236 (2008).

    Article  Google Scholar 

  7. A. M. Barbosa, A. B. Villaverde, L. G. Sousa, et al., Photomed. Laser Surg. 27, 591 (2009).

    Article  Google Scholar 

  8. X. Jiang, H. M. Ge, J. J. Liu, and Q. S. Ren, Laser Phys. 21, 548 (2011).

    Article  ADS  Google Scholar 

  9. H. Pretel, J. A. Oliveira, R. F. Z. Lizarelli, and L. T. O. Ramalho, Laser Phys. Lett. 6, 149 (2009).

    Article  ADS  Google Scholar 

  10. A. M. Rocha Junior, B. J. Vieira, L. C. de Andrade, and F. M. Aarestrup, Photomed. Laser Surg. 27, 303 (2009).

    Article  Google Scholar 

  11. R. T. Chow and L. Barnsley, Lasers Surg. Med. 37, 46 (2005).

    Article  Google Scholar 

  12. D. Hawkins, N. Houreld, and H. Abrahamse, Ann. N. Y. Acad. Sci. 1056, 486 (2005).

    Article  ADS  Google Scholar 

  13. E. S. Pessoa, R. M. Melhado, L. H. Theodoro, and V. G. Garcia, Photomed. Laser Surg. 22, 199 (2004).

    Article  Google Scholar 

  14. J. L. N. Bastos, R. F. Z. Lizarelli, and N. A. Parizotto, Laser Phys. 19, 1925 (2009).

    Article  ADS  Google Scholar 

  15. N. Ben-Dov, G. Shefer, A. Irintchev, et al., Biochim. Biophys. Acta 1448, 372 (1999).

    Article  Google Scholar 

  16. G. Shefer, U. Oron, A. Irintchev, et al., J. Cell Physiol. 187, 73 (2001).

    Article  Google Scholar 

  17. G. Shefer, T. A. Partridge, L. Heslop, et al., J. Cell Sci. 115, 1461 (2002).

    Google Scholar 

  18. J. Tuner and L. Hode, J. Clin. Laser Med. Surg. 16, 245 (1998).

    Google Scholar 

  19. F. Correa, R. A. Lopes Martins, J. C. Correa, et al., Photomed. Laser Surg. 25, 245 (2007).

    Article  Google Scholar 

  20. G. L. Warren, L. O’Farrell, M. Summan, et al., Am. J. Physiol. Cell Physiol. 286, 1031 (2004).

    Article  Google Scholar 

  21. J. Lagrota-Candido, R. Vasconcellos, M. Cavalcanti, et al., Int. J. Exp. Pathol. 83, 121 (2002).

    Article  Google Scholar 

  22. V. A. Melo, D. C. Anjos, R. Albuquerque Junior, et al., Acta Cir. Bras. 26, 129 (2011).

    Article  Google Scholar 

  23. A. S. Fonseca, G. A. Presta, M. Geller, and F. Paoli, Laser Phys. 21, 1829 (2011).

    Article  ADS  Google Scholar 

  24. Y.-D. Kim, S.-S. Kim, D.-S. Hwang, et al., Laser Phys. Lett. 4, 681 (2007).

    Article  ADS  Google Scholar 

  25. C. F. Oliveira, J. Hebling, P. P. C. Souza, et al., Laser Phys. Lett. 5, 680 (2008).

    Article  ADS  Google Scholar 

  26. C. F. Oliveira, F. G. Basso, E. C. Lins, et al., Laser Phys. 20, 1659 (2010).

    Article  ADS  Google Scholar 

  27. C. F. Oliveira, F. G. Basso, E. C. Lins, et al., Laser Phys. Lett. 8, 155 (2011).

    Article  ADS  Google Scholar 

  28. M. M. Tagliani, C. F. Oliveira, E. M. M. Lins, et al., Laser Phys. Lett. 7, 247 (2010).

    Article  ADS  Google Scholar 

  29. E. M. A. Clavijo, V. R. G. Clavijo, M. C. Bandeca, et al., Laser Phys. 19, 2041 (2009).

    Article  ADS  Google Scholar 

  30. A. P. G. Faria-Souza, E. H. M. Dantas, E. B. Silva, et al., Laser Phys. 17, 286 (2007).

    Article  ADS  Google Scholar 

  31. R. F. Z. Lizarelli, F. A. C. Miguel, K. M. Freitas-Pontes, et al., Laser Phys. Lett. 7, 805 (2010).

    Article  ADS  Google Scholar 

  32. L. Longo, Laser Phys. Lett. 7, 771 (2010).

    Article  ADS  Google Scholar 

  33. D. M. Dourado, S. Favero, V. Baranauskas, and M. A. da Cruz-Hofling, Lasers Surg. Med. 33, 352 (2003).

    Article  Google Scholar 

  34. X. Gao and J. D. Xing, Biomed. Sci. 16, 4 (2009).

    Article  Google Scholar 

  35. Y. Sakurai, M. Yamaguchi, and Y. Abiko, Eur. J. Oral. Sci. 108, 29 (2000).

    Article  Google Scholar 

  36. S. Biressi and T. A. Rando, Semin. Cell Dev. Biol. 21, 845 (2010).

    Article  Google Scholar 

  37. M. Karalaki, S. Fili, A. Philippou, and M. Koutsilieris, In Vivo 23, 779 (2009).

    Google Scholar 

  38. G. Shefer, N. Ben-Dov, O. Halevy, and U. Oron, Lasers Surg. Med. 40, 38 (2008).

    Article  Google Scholar 

  39. C. P. Zhang, T. L. Hao, P. Chen, et al., Laser Phys. 21, 2122 (2011).

    Article  ADS  Google Scholar 

  40. M. Freire, D. Almeida, J. Santos, and V. Sarmento, Laser Phys. 21, 958 (2011).

    Article  ADS  Google Scholar 

  41. J. J. C. Moraes, A. S. Queiroga, R. C. C. G. De Biase, et al., Laser Phys. 19, 1912 (2009).

    Article  ADS  Google Scholar 

  42. A. S. Queiroga, F. B. Sousa, J. M. S. Araújo, et al., Laser Phys. 18, 1087 (2008).

    Article  ADS  Google Scholar 

  43. D. A. Pires-Oliveira, R. F. Oliveira, S. U. Amadei, et al., Osteoporos Int. 21, 2109 (2010).

    Article  Google Scholar 

  44. M. A. Ribeiro, R. L. Albuquerque, L. M. Ramalho, et al., Photomed. Laser Surg. 27, 49 (2009).

    Article  Google Scholar 

  45. M. Bayat, A. Azari, and M. G. Golmohammadi, Photomed. Laser Surg. 28, 465 (2010).

    Article  Google Scholar 

  46. A. N. Pereira, C. P. Eduardo, E. Matson, and M. M. Marques, Lasers Surg. Med. 31, 263 (2002).

    Article  Google Scholar 

  47. M. M. Marques, N. A. Pereira, N. A. Fujihara, et al., Lasers Surg. Med. 34, 260 (2004).

    Article  Google Scholar 

  48. M. A. Gonzaga Ribeiro, R. L. Cavalcanti de Albuquerque, A. L. Santos Barreto, et al., Ind. J. Dent. Res. 20, 390 (2009).

    Google Scholar 

  49. L. S. Pugliese, A. P. Medrado, S. R. Reis, and A. Andrade, Pesqui. Odontol. Bras. 17, 307 (2003).

    Article  Google Scholar 

  50. J. Baptista, M. D. Martins, V. C. Pavesi, et al., Photomed. Laser Surg. 29, 11 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Paiva-Oliveira.

Additional information

Original Text © Astro, Ltd., 2012.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paiva-Oliveira, E.L., Lima, N.C., Silva, P.H. et al. Low-level laser therapy (LLLT) reduces inflammatory infiltrate and enhances skeletal muscle repair: Histomorphometric parameters. Laser Phys. 22, 1425–1430 (2012). https://doi.org/10.1134/S1054660X12090113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X12090113

Keywords

Navigation