1932

Abstract

Ions surround nucleic acids in what is referred to as an ion atmosphere. As a result, the folding and dynamics of RNA and DNA and their complexes with proteins and with each other cannot be understood without a reasonably sophisticated appreciation of these ions' electrostatic interactions. However, the underlying behavior of the ion atmosphere follows physical rules that are distinct from the rules of site binding that biochemists are most familiar and comfortable with. The main goal of this review is to familiarize nucleic acid experimentalists with the physical concepts that underlie nucleic acid–ion interactions. Throughout, we provide practical strategies for interpreting and analyzing nucleic acid experiments that avoid pitfalls from oversimplified or incorrect models. We briefly review the status of theories that predict or simulate nucleic acid–ion interactions and experiments that test these theories. Finally, we describe opportunities for going beyond phenomenological fits to a next-generation, truly predictive understanding of nucleic acid–ion interactions.

[Erratum, Closure]

An erratum has been published for this article:
Understanding Nucleic Acid–Ion Interactions
Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060409-092720
2014-06-02
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/biochem/83/1/annurev-biochem-060409-092720.html?itemId=/content/journals/10.1146/annurev-biochem-060409-092720&mimeType=html&fmt=ahah

Literature Cited

  1. Draper DE, Grilley D, Soto AM. 1.  2005. Ions and RNA folding. Annu. Rev. Biophys. Biomol. Struct. 34:221–43 [Google Scholar]
  2. Draper DE.2.  2008. RNA folding: thermodynamic and molecular descriptions of the roles of ions. Biophys. J. 95:5489–95 [Google Scholar]
  3. Knobler CM, Gelbart WM. 3.  2009. Physical chemistry of DNA viruses. Annu. Rev. Phys. Chem. 60:367–83 [Google Scholar]
  4. Chen SJ.4.  2008. RNA folding: conformational statistics, folding kinetics, and ion electrostatics. Annu. Rev. Biophys. 37:197–214 [Google Scholar]
  5. Jiang T, Wang ZG, Wu J. 5.  2009. Electrostatic regulation of genome packaging in human hepatitis B virus. Biophys. J. 96:3065–73 [Google Scholar]
  6. Wong GC, Pollack L. 6.  2010. Electrostatics of strongly charged biological polymers: ion-mediated interactions and self-organization in nucleic acids and proteins. Annu. Rev. Phys. Chem. 61:171–89 [Google Scholar]
  7. Chin K, Sharp KA, Honig B, Pyle AM. 7.  1999. Calculating the electrostatic properties of RNA provides new insights into molecular interactions and function. Nat. Struct. Biol. 6:1055–61 [Google Scholar]
  8. Misra VK, Draper DE. 8.  1999. The interpretation of Mg2+ binding isotherms for nucleic acids using Poisson–Boltzmann theory. J. Mol. Biol. 294:1135–47 [Google Scholar]
  9. Misra VK, Draper DE. 9.  2000. Mg2+ binding to tRNA revisited: the nonlinear Poisson–Boltzmann model. J. Mol. Biol. 299:813–25 [Google Scholar]
  10. Draper DE.10.  2004. A guide to ions and RNA structure. RNA 10:335–43 [Google Scholar]
  11. Tan ZJ, Chen SJ. 11.  2005. Electrostatic correlations and fluctuations for ion binding to a finite length polyelectrolyte. J. Chem. Phys. 122:44903 [Google Scholar]
  12. Grochowski P, Trylska J. 12.  2008. Continuum molecular electrostatics, salt effects, and counterion binding—a review of the Poisson–Boltzmann theory and its modifications. Biopolymers 89:93–113 [Google Scholar]
  13. Tan ZJ, Chen SJ. 13.  2010. Predicting ion binding properties for RNA tertiary structures. Biophys. J. 99:1565–76 [Google Scholar]
  14. Kantardjieff KA, Rupp B. 14.  2004. Protein isoelectric point as a predictor for increased crystallization screening efficiency. Bioinformatics 20:2162–68 [Google Scholar]
  15. Kiraga J, Mackiewicz P, Mackiewicz D, Kowalczuk M, Biecek P. 15.  et al. 2007. The relationships between the isoelectric point and: length of proteins, taxonomy and ecology of organisms. BMC Genomics 8:163 [Google Scholar]
  16. Grosberg AY, Nguyen TT, Shklovskii BI. 16.  2002. Colloquium: the physics of charge inversion in chemical and biological systems. Rev. Mod. Phys. 74:329–45 [Google Scholar]
  17. Bai Y, Das R, Millett IS, Herschlag D, Doniach S. 17.  2005. Probing counterion modulated repulsion and attraction between nucleic acid duplexes in solution. Proc. Natl. Acad. Sci. USA 102:1035–40 [Google Scholar]
  18. Brion P, Westhof E. 18.  1997. Hierarchy and dynamics of RNA folding. Annu. Rev. Biophys. Biomol. Struct. 26:113–37 [Google Scholar]
  19. Jack A, Ladner JE, Rhodes D, Brown RS, Klug A. 19.  1977. A crystallographic study of metal-binding to yeast phenylalanine transfer RNA. J. Mol. Biol. 111:315–28 [Google Scholar]
  20. Quigley GJ, Teeter MM, Rich A. 20.  1978. Structural analysis of spermine and magnesium ion binding to yeast phenylalanine transfer RNA. Proc. Natl. Acad. Sci. USA 75:64–68 [Google Scholar]
  21. Cate JH, Gooding AR, Podell E, Zhou K, Golden BL. 21.  et al. 1996. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273:1678–85 [Google Scholar]
  22. Cate JH, Doudna JA. 22.  1996. Metal-binding sites in the major groove of a large ribozyme domain. Structure 4:1221–29 [Google Scholar]
  23. Cate JH, Hanna RL, Doudna JA. 23.  1997. A magnesium ion core at the heart of a ribozyme domain. Nat. Struct. Biol. 4:553–58 [Google Scholar]
  24. Basu S, Rambo RP, Strauss-Soukup J, Cate JH, Ferre-D'Amare AR. 24.  et al. 1998. A specific monovalent metal ion integral to the AA platform of the RNA tetraloop receptor. Nat. Struct. Biol. 5:986–92 [Google Scholar]
  25. Conn GL, Gittis AG, Lattman EE, Misra VK, Draper DE. 25.  2002. A compact RNA tertiary structure contains a buried backbone–K+ complex. J. Mol. Biol. 318:963–73 [Google Scholar]
  26. Ennifar E, Walter P, Dumas P. 26.  2003. A crystallographic study of the binding of 13 metal ions to two related RNA duplexes. Nucleic Acids Res. 31:2671–82 [Google Scholar]
  27. Banatao DR, Altman RB, Klein TE. 27.  2003. Microenvironment analysis and identification of magnesium binding sites in RNA. Nucleic Acids Res. 31:4450–60 [Google Scholar]
  28. Stefan LR, Zhang R, Levitan AG, Hendrix DK, Brenner SE, Holbrook SR. 28.  2006. MeRNA: a database of metal ion binding sites in RNA structures. Nucleic Acids Res. 34:D131–34 [Google Scholar]
  29. Robertson MP, Scott WG. 29.  2007. The structural basis of ribozyme-catalyzed RNA assembly. Science 315:1549–53 [Google Scholar]
  30. Correll CC, Freeborn B, Moore PB, Steitz TA. 30.  1997. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell 91:705–12 [Google Scholar]
  31. Sharp KA, Honig B. 31.  1995. Salt effects on nucleic acids. Curr. Opin. Struct. Biol. 5:323–28 [Google Scholar]
  32. Woodson SA.32.  2005. Metal ions and RNA folding: a highly charged topic with a dynamic future. Curr. Opin. Chem. Biol. 9:104–9 [Google Scholar]
  33. Chu VB, Bai Y, Lipfert J, Herschlag D, Doniach S. 33.  2008. A repulsive field: advances in the electrostatics of the ion atmosphere. Curr. Opin. Chem. Biol. 12:619–25 [Google Scholar]
  34. Scott WG, Finch JT, Klug A. 34.  1995. The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell 81:991–1002 [Google Scholar]
  35. Scott WG, Murray JB, Arnold JR, Stoddard BL, Klug A. 35.  1996. Capturing the structure of a catalytic RNA intermediate: the hammerhead ribozyme. Science 274:2065–69 [Google Scholar]
  36. Blount KF, Uhlenbeck OC. 36.  2005. The structure-function dilemma of the hammerhead ribozyme. Annu. Rev. Biophys. Biomol. Struct. 34:415–40 [Google Scholar]
  37. Shi H, Moore PB. 37.  2000. The crystal structure of yeast phenylalanine tRNA at 1.93 Å resolution: a classic structure revisited. RNA 6:1091–105 [Google Scholar]
  38. Leach AR.38.  2001. Molecular Modeling: Principles and Applications Harlow, UK/New York: Prentice Hall
  39. Grilley D, Misra V, Caliskan G, Draper DE. 39.  2007. Importance of partially unfolded conformations for Mg2+-induced folding of RNA tertiary structure: structural models and free energies of Mg2+ interactions. Biochemistry 46:10266–78 [Google Scholar]
  40. Bai Y, Chu VB, Lipfert J, Pande VS, Herschlag D, Doniach S. 40.  2008. Critical assessment of nucleic acid electrostatics via experimental and computational investigation of an unfolded state ensemble. J. Am. Chem. Soc. 130:12334–41 [Google Scholar]
  41. Chu VB, Lipfert J, Bai Y, Pande VS, Doniach S, Herschlag D. 41.  2009. Do conformational biases of simple helical junctions influence RNA folding stability and specificity?. RNA 15:2195–205 [Google Scholar]
  42. Anthony PC, Sim AY, Chu VB, Doniach S, Block SM, Herschlag D. 42.  2012. Electrostatics of nucleic acid folding under conformational constraint. J. Am. Chem. Soc. 134:4607–14 [Google Scholar]
  43. Dupuis NF, Holmstrom ED, Nesbitt DJ. 43.  2013. Single-molecule kinetics reveal cation-promoted DNA duplex formation through ordering of single-stranded helices. Biophys. J. 105:756–66 [Google Scholar]
  44. Azuara C, Orland H, Bon M, Koehl P, Delarue M. 44.  2008. Incorporating dipolar solvents with variable density in Poisson–Boltzmann electrostatics. Biophys. J. 95:5587–605 [Google Scholar]
  45. Ben-Yaakov D, Andelman D, Podgornik R. 45.  2011. Dielectric decrement as a source of ion-specific effects. J. Chem. Phys. 134:074705 [Google Scholar]
  46. Demery V, Dean DS, Podgornik R. 46.  2012. Electrostatic interactions mediated by polarizable counterions: weak and strong coupling limits. J. Chem. Phys. 137:174903 [Google Scholar]
  47. Senn HM, Thiel W. 47.  2009. QM/MM methods for biomolecular systems. Angew. Chem. Int. Ed. Engl. 48:1198–229 [Google Scholar]
  48. Schworer M, Breitenfeld B, Troster P, Bauer S, Lorenzen K. 48.  et al. 2013. Coupling density functional theory to polarizable force fields for efficient and accurate Hamiltonian molecular dynamics simulations. J. Chem. Phys. 138:244103 [Google Scholar]
  49. Record MT Jr, Anderson CF, Lohman TM. 49.  1978. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q. Rev. Biophys. 11:103–78 [Google Scholar]
  50. Bleam ML, Anderson CF, Record MT. 50.  1980. Relative binding affinities of monovalent cations for double-stranded DNA. Proc. Natl. Acad. Sci. USA 77:3085–89 [Google Scholar]
  51. Bai Y, Greenfeld M, Travers KJ, Chu VB, Lipfert J. 51.  et al. 2007. Quantitative and comprehensive decomposition of the ion atmosphere around nucleic acids. J. Am. Chem. Soc. 129:14981–88 [Google Scholar]
  52. Das R, Travers KJ, Bai Y, Herschlag D. 52.  2005. Determining the Mg2+ stoichiometry for folding an RNA metal ion core. J. Am. Chem. Soc. 127:8272–73 [Google Scholar]
  53. Greenfeld M, Herschlag D. 53.  2009. Probing nucleic acid–ion interactions with buffer exchange–atomic emission spectroscopy. Methods Enzymol. 469:375–89 [Google Scholar]
  54. Grilley D, Soto AM, Draper DE. 54.  2009. Direct quantitation of Mg2+–RNA interactions by use of a fluorescent dye. Methods Enzymol. 455:71–94 [Google Scholar]
  55. Soto AM, Misra V, Draper DE. 55.  2007. Tertiary structure of an RNA pseudoknot is stabilized by “diffuse” Mg2+ ions. Biochemistry 46:2973–83 [Google Scholar]
  56. Grilley D, Soto AM, Draper DE. 56.  2006. Mg2+–RNA interaction free energies and their relationship to the folding of RNA tertiary structures. Proc. Natl. Acad. Sci. USA 103:14003–8 [Google Scholar]
  57. Eisenberg B.57.  2013. Interacting ions in biophysics: Real is not ideal. Biophys. J. 104:1849–66 [Google Scholar]
  58. Das R, Mills TT, Kwok LW, Maskel GS, Millett IS. 58.  et al. 2003. Counterion distribution around DNA probed by solution X-ray scattering. Phys. Rev. Lett. 90:188103 [Google Scholar]
  59. Andresen K, Das R, Park HY, Smith H, Kwok LW. 59.  et al. 2004. Spatial distribution of competing ions around DNA in solution. Phys. Rev. Lett. 93:248103 [Google Scholar]
  60. Pabit SA, Meisburger SP, Li L, Blose JM, Jones CD, Pollack L. 60.  2010. Counting ions around DNA with anomalous small-angle X-ray scattering. J. Am. Chem. Soc. 132:16334–36 [Google Scholar]
  61. Takamoto K, Das R, He Q, Doniach S, Brenowitz M. 61.  et al. 2004. Principles of RNA compaction: insights from the equilibrium folding pathway of the P4–P6 RNA domain in monovalent cations. J. Mol. Biol. 343:1195–206 [Google Scholar]
  62. Lipfert J, Sim AY, Herschlag D, Doniach S. 62.  2010. Dissecting electrostatic screening, specific ion binding, and ligand binding in an energetic model for glycine riboswitch folding. RNA 16:708–19 [Google Scholar]
  63. Thomas R. 63.  1954. Research on the denaturation of desoxyribonucleic acids. Biochim. Biophys. Acta 14:231–40 [Google Scholar]
  64. Williams AP, Longfellow CE, Freier SM, Kierzek R, Turner DH. 64.  1989. Laser temperature-jump, spectroscopic, and thermodynamic study of salt effects on duplex formation by dGCATGC. Biochemistry 28:4283–91 [Google Scholar]
  65. Nakano S, Fujimoto M, Hara H, Sugimoto N. 65.  1999. Nucleic acid duplex stability: influence of base composition on cation effects. Nucleic Acids Res. 27:2957–65 [Google Scholar]
  66. Rau DC, Lee B, Parsegian VA. 66.  1984. Measurement of the repulsive force between polyelectrolyte molecules in ionic solution: hydration forces between parallel DNA double helices. Proc. Natl. Acad. Sci. USA 81:2621–25 [Google Scholar]
  67. Rau DC, Parsegian VA. 67.  1992. Direct measurement of the intermolecular forces between counterion-condensed DNA double helices. Evidence for long range attractive hydration forces. Biophys. J. 61:246–59 [Google Scholar]
  68. Podgornik R, Rau DC, Parsegian VA. 68.  1994. Parametrization of direct and soft steric-undulatory forces between DNA double helical polyelectrolytes in solutions of several different anions and cations. Biophys. J. 66:962–71 [Google Scholar]
  69. Korolev N, Lyubartsev AP, Rupprecht A, Nordenskiöld L. 69.  1999. Competitive binding of Mg2+, Ca2+, Na+, and K+ ions to DNA in oriented DNA fibers: experimental and Monte Carlo simulation results. Biophys. J. 77:2736–49 [Google Scholar]
  70. Koch MH, Vachette P, Svergun DI. 70.  2003. Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Q. Rev. Biophys. 36:147–227 [Google Scholar]
  71. Lipfert J, Doniach S. 71.  2007. Small-angle X-ray scattering from RNA, proteins, and protein complexes. Annu. Rev. Biophys. Biomol. Struct. 36:307–27 [Google Scholar]
  72. Fang X, Pan T, Sosnick TR. 72.  1999. A thermodynamic framework and cooperativity in the tertiary folding of a Mg2+-dependent ribozyme. Biochemistry 38:16840–46 [Google Scholar]
  73. Fang X, Littrell K, Yang XJ, Henderson SJ, Siefert S. 73.  et al. 2000. Mg2+-dependent compaction and folding of yeast tRNAPhe and the catalytic domain of the B. subtilis RNase P RNA determined by small-angle X-ray scattering. Biochemistry 39:11107–13 [Google Scholar]
  74. Russell R, Millett IS, Doniach S, Herschlag D. 74.  2000. Small angle X-ray scattering reveals a compact intermediate in RNA folding. Nat. Struct. Biol. 7:367–70 [Google Scholar]
  75. Fang XW, Golden BL, Littrell K, Shelton V, Thiyagarajan P. 75.  et al. 2001. The thermodynamic origin of the stability of a thermophilic ribozyme. Proc. Natl. Acad. Sci. USA 98:4355–60 [Google Scholar]
  76. Russell R, Zhuang X, Babcock HP, Millett IS, Doniach S. 76.  et al. 2002. Exploring the folding landscape of a structured RNA. Proc. Natl. Acad. Sci. USA 99:155–60 [Google Scholar]
  77. Lipfert J, Das R, Chu VB, Kudaravalli M, Boyd N. 77.  et al. 2007. Structural transitions and thermodynamics of a glycine-dependent riboswitch from Vibrio cholerae. J. Mol. Biol. 365:1393–406 [Google Scholar]
  78. Silverman SK, Deras ML, Woodson SA, Scaringe SA, Cech TR. 78.  2000. Multiple folding pathways for the P4–P6 RNA domain. Biochemistry 39:12465–75 [Google Scholar]
  79. Frederiksen JK, Li NS, Das R, Herschlag D, Piccirilli JA. 79.  2012. Metal-ion rescue revisited: biochemical detection of site-bound metal ions important for RNA folding. RNA 18:1123–41 [Google Scholar]
  80. Heilman-Miller SL, Thirumalai D, Woodson SA. 80.  2001. Role of counterion condensation in folding of the Tetrahymena ribozyme. I. Equilibrium stabilization by cations. J. Mol. Biol. 306:1157–66 [Google Scholar]
  81. Doherty EA, Batey RT, Masquida B, Doudna JA. 81.  2001. A universal mode of helix packing in RNA. Nat. Struct. Biol. 8:339–43 [Google Scholar]
  82. Chauhan S, Caliskan G, Briber RM, Perez-Salas U, Rangan P. 82.  et al. 2005. RNA tertiary interactions mediate native collapse of a bacterial group I ribozyme. J. Mol. Biol. 353:1199–209 [Google Scholar]
  83. Koculi E, Hyeon C, Thirumalai D, Woodson SA. 83.  2007. Charge density of divalent metal cations determines RNA stability. J. Am. Chem. Soc. 129:2676–82 [Google Scholar]
  84. Moghaddam S, Caliskan G, Chauhan S, Hyeon C, Briber RM. 84.  et al. 2009. Metal ion dependence of cooperative collapse transitions in RNA. J. Mol. Biol. 393:753–64 [Google Scholar]
  85. Hill AV.85.  1910. The possible effects of the aggregation of the molecules of haemoglobin on its oxygen dissociation curve. J. Physiol. 40:4–7 [Google Scholar]
  86. Misra VK, Draper DE. 86.  2001. A thermodynamic framework for Mg2+ binding to RNA. Proc. Natl. Acad. Sci. USA 98:12456–61 [Google Scholar]
  87. Leipply D, Draper DE. 87.  2010. Dependence of RNA tertiary structural stability on Mg2+ concentration: interpretation of the Hill equation and coefficient. Biochemistry 49:1843–53 [Google Scholar]
  88. Takamoto K, He Q, Morris S, Chance MR, Brenowitz M. 88.  2002. Monovalent cations mediate formation of native tertiary structure of the Tetrahymena thermophila ribozyme. Nat. Struct. Biol. 9:928–33 [Google Scholar]
  89. Das R, Karanicolas J, Baker D. 89.  2010. Atomic accuracy in predicting and designing noncanonical RNA structure. Nat. Methods 7:291–94 [Google Scholar]
  90. Sattin BD, Zhao W, Travers K, Chu S, Herschlag D. 90.  2008. Direct measurement of tertiary contact cooperativity in RNA folding. J. Am. Chem. Soc. 130:6085–87 [Google Scholar]
  91. Solomatin SV, Greenfeld M, Chu S, Herschlag D. 91.  2010. Multiple native states reveal persistent ruggedness of an RNA folding landscape. Nature 463:681–84 [Google Scholar]
  92. Dahm SC, Uhlenbeck OC. 92.  1991. Role of divalent metal ions in the hammerhead RNA cleavage reaction. Biochemistry 30:9464–69 [Google Scholar]
  93. Wang S, Karbstein K, Peracchi A, Beigelman L, Herschlag D. 93.  1999. Identification of the hammerhead ribozyme metal ion binding site responsible for rescue of the deleterious effect of a cleavage site phosphorothioate. Biochemistry 38:14363–78 [Google Scholar]
  94. Sigel RK, Vaidya A, Pyle AM. 94.  2000. Metal ion binding sites in a group II intron core. Nat. Struct. Biol. 7:1111–16 [Google Scholar]
  95. Maderia M, Hunsicker LM, DeRose VJ. 95.  2000. Metal-phosphate interactions in the hammerhead ribozyme observed by 31P NMR and phosphorothioate substitutions. Biochemistry 39:12113–20 [Google Scholar]
  96. Pyle A.96.  2002. Metal ions in the structure and function of RNA. J. Biol. Inorg. Chem. 7:679–90 [Google Scholar]
  97. DeRose VJ.97.  2003. Metal ion binding to catalytic RNA molecules. Curr. Opin. Struct. Biol. 13:317–24 [Google Scholar]
  98. Nakano S, Cerrone AL, Bevilacqua PC. 98.  2003. Mechanistic characterization of the HDV genomic ribozyme: classifying the catalytic and structural metal ion sites within a multichannel reaction mechanism. Biochemistry 42:2982–94 [Google Scholar]
  99. Christian EL.99.  2005. Identification and characterization of metal ion binding by thiophilic metal ion rescue. Handbook of RNA Biochemistry RK Hartmann, A Bindereif, A Schön, E Westhof 319–44 Weinheim, Ger.: Wiley-VCH [Google Scholar]
  100. Basu S, Strobel SA. 100.  1999. Thiophilic metal ion rescue of phosphorothioate interference within the Tetrahymena ribozyme P4–P6 domain. RNA 5:1399–407 [Google Scholar]
  101. Hougland JL, Piccirilli JA, Forconi M, Lee J, Herschlag D. 101.  2006. How the group I intron works: a case study of RNA structure and function. Cold Spring Harb. Monogr. Arch. 43:133–205 [Google Scholar]
  102. Nakano S, Proctor DJ, Bevilacqua PC. 102.  2001. Mechanistic characterization of the HDV genomic ribozyme: assessing the catalytic and structural contributions of divalent metal ions within a multichannel reaction mechanism. Biochemistry 40:12022–38 [Google Scholar]
  103. Travers KJ, Boyd N, Herschlag D. 103.  2007. Low specificity of metal ion binding in the metal ion core of a folded RNA. RNA 13:1205–13 [Google Scholar]
  104. Manning GS.104.  1969. Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J. Chem. Phys. 51:924–33 [Google Scholar]
  105. Manning GS.105.  1977. Limiting laws and counterion condensation in polyelectrolyte solutions. IV. The approach to the limit and the extraordinary stability of the charge fraction. Biophys. Chem. 7:95–102 [Google Scholar]
  106. Manning GS.106.  1978. Molecular theory of polyelectrolyte solutions with applications to electrostatic properties of polynucleotides. Q. Rev. Biophys. 11:179–246 [Google Scholar]
  107. Keyser UF, Koeleman BN, Van Dorp S, Krapf D, Smeets RMM. 107.  et al. 2006. Direct force measurements on DNA in a solid-state nanopore. Nat. Phys. 2:473–77 [Google Scholar]
  108. Bayer J, Radler JO. 108.  2006. DNA microelectrophoresis using double focus fluorescence correlation spectroscopy. Electrophoresis 27:3952–63 [Google Scholar]
  109. Ghosal S.109.  2007. Electrokinetic-flow-induced viscous drag on a tethered DNA inside a nanopore. Phys. Rev. E 76:061916 [Google Scholar]
  110. Maffeo C, Schopflin R, Brutzer H, Stehr R, Aksimentiev A. 110.  et al. 2010. DNA–DNA interactions in tight supercoils are described by a small effective charge density. Phys. Rev. Lett. 105:158101 [Google Scholar]
  111. Vuletic T, Babic SD, Grgicin D, Aumiler D, Radler J. 111.  et al. 2011. Manning free counterion fraction for a rodlike polyion: aqueous solutions of short DNA fragments in presence of very low added salt. Phys. Rev. E 83:041803 [Google Scholar]
  112. Cherstvy AG.112.  2011. DNA cyclization: suppression or enhancement by electrostatic repulsions?. J. Phys. Chem. B 115:4286–94 [Google Scholar]
  113. McIntosh DB, Saleh OA. 113.  2011. Salt species-dependent electrostatic effects on ssDNA elasticity. Macromolecules 44:2328–33 [Google Scholar]
  114. Hecht JL, Honig B, Shin YK, Hubbell WL. 114.  1995. Electrostatic potentials near-the-surface of DNA: comparing theory and experiment. J. Phys. Chem. 99:7782–86 [Google Scholar]
  115. Hansen PL, Podgornik R, Parsegian VA. 115.  2001. Osmotic properties of DNA: critical evaluation of counterion condensation theory. Phys. Rev. E 64:2 Part 1021907 [Google Scholar]
  116. Tan ZJ, Chen SJ. 116.  2006. Ion-mediated nucleic acid helix-helix interactions. Biophys. J. 91:518–36 [Google Scholar]
  117. Anderson CF, Record MT. 117.  1982. Poly-electrolyte theories and their applications to DNA. Annu. Rev. Phys. Chem. 33:191–222 [Google Scholar]
  118. Honig B, Nicholls A. 118.  1995. Classical electrostatics in biology and chemistry. Science 268:1144–49 [Google Scholar]
  119. Jayaram B, Sharp KA, Honig B. 119.  1989. The electrostatic potential of B-DNA. Biopolymers 28:975–93 [Google Scholar]
  120. Yang AS, Gunner MR, Sampogna R, Sharp K, Honig B. 120.  1993. On the calculations of pKas in proteins. Proteins 15:252–65 [Google Scholar]
  121. Sharp KA, Honig B. 121.  1990. Calculating total electrostatic energies with the non-linear Poisson–Boltzmann equation. J. Phys. Chem. 94:7684–92 [Google Scholar]
  122. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. 122.  2001. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98:10037–41 [Google Scholar]
  123. Holm C, Kekicheff P, Podgornik R. 123.  2001. Electrostatic Effects in Soft Matter and Biophysics Dordrecht, Neth.: Kluwer Acad.
  124. Dong F, Olsen B, Baker NA. 124.  2008. Computational methods for biomolecular electrostatics. Methods Cell Biol. 84:843–70 [Google Scholar]
  125. Debye P, Hückel E. 125.  1923. The theory of electrolytes. I. The lowering of the freezing point and related occurrences. Phys. Z. 24:185–206 [Google Scholar]
  126. Nicholls A, Honig B. 126.  1991. A rapid finite-difference algorithm, utilizing successive over-relaxation to solve the Poisson–Boltzmann equation. J. Comput. Chem. 12:435–45 [Google Scholar]
  127. Honig B, Rocchia W, Alexov E. 127.  2001. Extending the applicability of the nonlinear Poisson–Boltzmann equation: multiple dielectric constants and multivalent ions. J. Phys. Chem. B 105:6507–14 [Google Scholar]
  128. Holst MJ, Saied F. 128.  1995. Numerical solution of the nonlinear Poisson–Boltzmann equation: developing more robust and efficient methods. J. Comput. Chem. 16:337–64 [Google Scholar]
  129. Holst MJ, Saied F. 129.  1995. Numerical solution of the nonlinear Poisson–Boltzmann equation: developing more robust and efficient methods. J. Comput. Chem. 16:337–64 [Google Scholar]
  130. Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH. 130.  et al. 2007. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 35:W522–25 [Google Scholar]
  131. Bashford D, Gerwert K. 131.  1992. Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin. J. Mol. Biol. 224:473–86 [Google Scholar]
  132. Koehl P, Delarue M. 132.  2010. AQUASOL: an efficient solver for the dipolar Poisson–Boltzmann–Langevin equation. J. Chem. Phys. 132:064101 [Google Scholar]
  133. Koehl P, Orland H, Delarue M. 133.  2009. Beyond the Poisson–Boltzmann model: modeling biomolecule–water and water–water interactions. Phys. Rev. Lett. 102:087801 [Google Scholar]
  134. Koehl P, Orland H, Delarue M. 134.  2009. Computing ion solvation free energies using the dipolar Poisson model. J. Phys. Chem. B 113:5694–97 [Google Scholar]
  135. Azuara C, Lindahl E, Koehl P, Orland H, Delarue M. 135.  2006. PDB_hydro: incorporating dipolar solvents with variable density in the Poisson–Boltzmann treatment of macromolecule electrostatics. Nucleic Acids Res. 34:W38–42 [Google Scholar]
  136. Misra VK, Draper DE. 136.  2002. The linkage between magnesium binding and RNA folding. J. Mol. Biol. 317:507–21 [Google Scholar]
  137. Misra VK, Shiman R, Draper DE. 137.  2003. A thermodynamic framework for the magnesium-dependent folding of RNA. Biopolymers 69:118–36 [Google Scholar]
  138. Lipfert J, Chu VB, Bai Y, Herschlag D, Doniach S. 138.  2007. Low-resolution models for nucleic acids from small-angle X-ray scattering with applications to electrostatic modeling. J. Appl. Crystallogr. 40:S229–34 [Google Scholar]
  139. Perez-Salas UA, Rangan P, Krueger S, Briber RM, Thirumalai D, Woodson SA. 139.  2004. Compaction of a bacterial group I ribozyme coincides with the assembly of core helices. Biochemistry 43:1746–53 [Google Scholar]
  140. Heilman-Miller SL, Pan J, Thirumalai D, Woodson SA. 140.  2001. Role of counterion condensation in folding of the Tetrahymena ribozyme. II. Counterion-dependence of folding kinetics. J. Mol. Biol. 309:57–68 [Google Scholar]
  141. Chu VB, Bai Y, Lipfert J, Herschlag D, Doniach S. 141.  2007. Evaluation of ion binding to DNA duplexes using a size-modified Poisson–Boltzmann theory. Biophys. J. 93:3202–9 [Google Scholar]
  142. Borukhov I, Andelman D, Orland H. 142.  1997. Steric effects in electrolytes: a modified Poisson–Boltzmann equation. Phys. Rev. Lett. 79:435–38 [Google Scholar]
  143. Shiman R, Draper DE. 143.  2000. Stabilization of RNA tertiary structure by monovalent cations. J. Mol. Biol. 302:79–91 [Google Scholar]
  144. Lambert D, Leipply D, Shiman R, Draper DE. 144.  2009. The influence of monovalent cation size on the stability of RNA tertiary structures. J. Mol. Biol. 390:791–804 [Google Scholar]
  145. Shklovskii BI.145.  1999. Screening of a macroion by multivalent ions: correlation-induced inversion of charge. Phys. Rev. E 60:5802–11 [Google Scholar]
  146. Shapovalov VL, Brezesinski G. 146.  2006. Breakdown of the Gouy–Chapman model for highly charged Langmuir monolayers: counterion size effect. J. Phys. Chem. B 110:10032–40 [Google Scholar]
  147. Pabit SA, Qiu X, Lamb JS, Li L, Meisburger SP, Pollack L. 147.  2009. Both helix topology and counterion distribution contribute to the more effective charge screening in dsRNA compared with dsDNA. Nucleic Acids Res. 37:3887–96 [Google Scholar]
  148. Pollack L.148.  2011. SAXS studies of ion–nucleic acid interactions. Annu. Rev. Biophys. 40:225–42 [Google Scholar]
  149. Rouzina I, Bloomfield VA. 149.  1996. Influence of ligand spatial organization on competitive electrostatic binding to DNA. J. Phys. Chem. 100:4305–13 [Google Scholar]
  150. Antypov D, Barbosa MC, Holm C. 150.  2005. Incorporation of excluded-volume correlations into Poisson–Boltzmann theory. Phys. Rev. E 71:061106 [Google Scholar]
  151. Gavryushov S.151.  2009. Mediating role of multivalent cations in DNA electrostatics: an epsilon-modified Poisson–Boltzmann study of B-DNA–B-DNA interactions in mixture of NaCl and MgCl2 solutions. J. Phys. Chem. B 113:2160–69 [Google Scholar]
  152. Gavryushov S.152.  2008. Electrostatics of B-DNA in NaCl and CaCl2 solutions: ion size, interionic correlation, and solvent dielectric saturation effects. J. Phys. Chem. B 112:8955–65 [Google Scholar]
  153. Poitevin F, Orland H, Doniach S, Koehl P, Delarue M. 153.  2011. AquaSAXS: a web server for computation and fitting of SAXS profiles with non-uniformally hydrated atomic models. Nucleic Acids Res. 39:W184–89 [Google Scholar]
  154. Grønbech-Jensen N, Mashl RJ, Bruinsma RF, Gelbart WM. 154.  1997. Counterion-induced attraction between rigid polyelectrolytes. Phys. Rev. Lett. 78:2477–80 [Google Scholar]
  155. Nishio T, Minakata A. 155.  2000. Effects of ion size and valence on ion distribution in mixed counterion systems of rodlike polyelectrolyte solution. I. Mixed-size counterion systems with same valence. J. Chem. Phys. 113:10784–92 [Google Scholar]
  156. Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM. 156.  2005. Direct observation of base-pair stepping by RNA polymerase. Nature 438:460–65 [Google Scholar]
  157. He Z, Chen S-J. 157.  2013. Quantifying Coulombic and solvent polarization-mediated forces between DNA helices. J. Phys. Chem. B 117:7221–27 [Google Scholar]
  158. Wilson RW, Bloomfield VA. 158.  1979. Counterion-induced condensation of deoxyribonucleic acid. A light-scattering study. Biochemistry 18:2192–96 [Google Scholar]
  159. Bloomfield VA.159.  1997. DNA condensation by multivalent cations. Biopolymers 44:269–82 [Google Scholar]
  160. Angelini TE, Liang H, Wriggers W, Wong GC. 160.  2003. Like-charge attraction between polyelectrolytes induced by counterion charge density waves. Proc. Natl. Acad. Sci. USA 100:8634–37 [Google Scholar]
  161. Besteman K, Zevenbergen MA, Heering HA, Lemay SG. 161.  2004. Direct observation of charge inversion by multivalent ions as a universal electrostatic phenomenon. Phys. Rev. Lett. 93:170802 [Google Scholar]
  162. van der Heyden FH, Stein D, Besteman K, Lemay SG, Dekker C. 162.  2006. Charge inversion at high ionic strength studied by streaming currents. Phys. Rev. Lett. 96:224502 [Google Scholar]
  163. Besteman K, Van Eijk K, Lemay SG. 163.  2007. Charge inversion accompanies DNA condensation by multivalent ions. Nat. Phys. 3:641–44 [Google Scholar]
  164. Andresen K, Qiu X, Pabit SA, Lamb JS, Park HY. 164.  et al. 2008. Mono- and trivalent ions around DNA: a small-angle scattering study of competition and interactions. Biophys. J. 95:287–95 [Google Scholar]
  165. Besteman K, Hage S, Dekker NH, Lemay SG. 165.  2007. Role of tension and twist in single-molecule DNA condensation. Phys. Rev. Lett. 98:058103 [Google Scholar]
  166. Rouzina I, Bloomfield VA. 166.  1996. Macroion attraction due to electrostatic correlation between screening counterions. 1. Mobile surface-adsorbed ions and diffuse ion cloud. J. Phys. Chem. 100:9977–89 [Google Scholar]
  167. Nguyen TT, Grosberg AY, Shklovskii BI. 167.  2000. Macroions in salty water with multivalent ions: giant inversion of charge. Phys. Rev. Lett. 85:1568–71 [Google Scholar]
  168. Jiménez-Ángeles F, Lozada-Cassou M. 168.  2004. A model macroion solution next to a charged wall: overcharging, charge reversal, and charge inversion by macroions. J. Phys. Chem. B 108:7286–96 [Google Scholar]
  169. Kanduc M, Naji A, Podgornik R. 169.  2010. Counterion-mediated weak and strong coupling electrostatic interaction between like-charged cylindrical dielectrics. J. Chem. Phys. 132:224703 [Google Scholar]
  170. Burkhardt C, Zacharias M. 170.  2001. Modelling ion binding to AA platform motifs in RNA: a continuum solvent study including conformational adaptation. Nucleic Acids Res. 29:3910–18 [Google Scholar]
  171. Philips A, Milanowska K, Lach G, Boniecki M, Rother K, Bujnicki JM. 171.  2012. MetalionRNA: computational predictor of metal-binding sites in RNA structures. Bioinformatics 28:198–205 [Google Scholar]
  172. Cheatham TE III, Kollman PA. 172.  2000. Molecular dynamics simulation of nucleic acids. Annu. Rev. Phys. Chem. 51:435–71 [Google Scholar]
  173. Schlick T.173.  2002. Molecular Modeling and Simulation: An Interdisciplinary Guide New York: Springer
  174. Mackerell AD Jr, Nilsson L. 174.  2008. Molecular dynamics simulations of nucleic acid–protein complexes. Curr. Opin. Struct. Biol. 18:194–99 [Google Scholar]
  175. Cheatham TE III, Young MA. 175.  2000. Molecular dynamics simulation of nucleic acids: successes, limitations, and promise. Biopolymers 56:232–56 [Google Scholar]
  176. Chen AA, Marucho M, Baker NA, Pappu RV. 176.  2009. Simulations of RNA interactions with monovalent ions. Methods Enzymol. 469:411–32 [Google Scholar]
  177. Chen AA, Draper DE, Pappu RV. 177.  2009. Molecular simulation studies of monovalent counterion-mediated interactions in a model RNA kissing loop. J. Mol. Biol. 390:805–19 [Google Scholar]
  178. Auffinger P, Cheatham TE III, Vaiana AC. 178.  2007. Spontaneous formation of KCl aggregates in biomolecular simulations: a force field issue?. J. Chem. Theory Comput. 3:1851–59 [Google Scholar]
  179. Joung IS, Cheatham TE III. 179.  2008. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B 112:9020–41 [Google Scholar]
  180. Yoo J, Aksimentiev A. 180.  2011. Improved parametrization of Li+, Na+, K+, and Mg2+ ions for all-atom molecular dynamics simulations of nucleic acid systems. J. Phys. Chem. Lett. 3:45–50 [Google Scholar]
  181. Hart K, Foloppe N, Baker CM, Denning EJ, Nilsson L, Mackerell AD Jr. 181.  2012. Optimization of the CHARMM additive force field for DNA: improved treatment of the BI/BII conformational equilibrium. J. Chem. Theory Comput. 8:348–62 [Google Scholar]
  182. Callahan KM, Casillas-Ituarte NN, Roeselova M, Allen HC, Tobias DJ. 182.  2010. Solvation of magnesium dication: molecular dynamics simulation and vibrational spectroscopic study of magnesium chloride in aqueous solutions. J. Phys. Chem. A 114:5141–48 [Google Scholar]
  183. Yoo J, Aksimentiev A. 183.  2012. Competitive binding of cations to duplex DNA revealed through molecular dynamics simulations. J. Phys. Chem. B 116:12946–54 [Google Scholar]
  184. Moult J, Pedersen JT, Judson R, Fidelis K. 184.  1995. A large-scale experiment to assess protein structure prediction methods. Proteins 23:ii–v [Google Scholar]
  185. Moult J.185.  2005. A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr. Opin. Struct. Biol. 15:285–89 [Google Scholar]
  186. Sripakdeevong P, Beauchamp K, Das R. 186.  2012. Why can't we predict RNA structure at atomic resolution?. RNA 3D Structure Analysis and Prediction N Leontis, E Westhof 43–65 Heidelberg, Ger.: Springer [Google Scholar]
  187. Cruz JA, Blanchet MF, Boniecki M, Bujnicki JM, Chen SJ. 187.  et al. 2012. RNA-puzzles: a CASP-like evaluation of RNA three-dimensional structure prediction. RNA 18:610–25 [Google Scholar]
  188. Sanishvili R, Volz KW, Westbrook EM, Margoliash E. 188.  1995. The low ionic strength crystal structure of horse cytochrome c at 2.1 Å resolution and comparison with its high ionic strength counterpart. Structure 3:707–16 [Google Scholar]
  189. Bjorkman AJ, Mowbray SL. 189.  1998. Multiple open forms of ribose-binding protein trace the path of its conformational change. J. Mol. Biol. 279:651–64 [Google Scholar]
  190. Bhattacharya AA, Grune T, Curry S. 190.  2000. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. J. Mol. Biol. 303:721–32 [Google Scholar]
  191. Hegde SS, Vetting MW, Roderick SL, Mitchenall LA, Maxwell A. 191.  et al. 2005. A fluoroquinolone resistance protein from Mycobacterium tuberculosis that mimics DNA. Science 308:1480–83 [Google Scholar]
  192. Khrapunov S, Cheng H, Hegde S, Blanchard J, Brenowitz M. 192.  2008. Solution structure and refolding of the Mycobacterium tuberculosis pentapeptide repeat protein MfpA. J. Biol. Chem. 283:36290–99 [Google Scholar]
  193. Drew HR, Samson S, Dickerson RE. 193.  1982. Structure of a B-DNA dodecamer at 16 K. Proc. Natl. Acad. Sci. USA 79:4040–44 [Google Scholar]
  194. Liu L, Botos I, Wang Y, Leonard JN, Shiloach J. 194.  et al. 2008. Structural basis of Toll-like receptor 3 signaling with double-stranded RNA. Science 320:379–81 [Google Scholar]
  195. Butler EB, Xiong Y, Wang J, Strobel SA. 195.  2011. Structural basis of cooperative ligand binding by the glycine riboswitch. Chem. Biol. 18:293–98 [Google Scholar]
  196. Giambaşu GM, Luchko T, Herschlag D, York DM, Case DA. 196.  2014. Ion counting from explicit solvent simulations and 3D-RISM. Biophys. J. 106:883–94 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060409-092720
Loading
/content/journals/10.1146/annurev-biochem-060409-092720
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error