1932

Abstract

The identification of heterozygous mutations in the metabolic enzyme isocitrate dehydrogenase (IDH) in subsets of cancers, including secondary glioblastoma, acute myeloid leukemia, intrahepatic cholangiocarcinoma, and chondrosarcomas, led to intense discovery efforts to delineate the mutations’ involvement in carcinogenesis and to develop therapeutics, which we review here. The three IDH isoforms (nicotinamide adenine dinucleotide phosphate–dependent IDH1 and IDH2, and nicotinamide adenine dinucleotide–dependent IDH3) contribute to regulating the circuitry of central metabolism. Several biochemical and genetic observations led to the discovery of the neomorphic production of the oncometabolite ()-2-hydroxyglutarate (2-HG) by mutant IDH1 and IDH2 (mIDH). Heterozygous mutation of IDH1/2 and accumulation of 2-HG cause profound metabolic and epigenetic dysregulation, including inhibition of normal cellular differentiation, leading to disease. Crystallographic structural studies during the development of compounds targeting mIDH demonstrated common allosteric inhibition by distinct chemotypes. Ongoing clinical trials in patients with mIDH advanced hematologic malignancies have demonstrated compelling clinical proof-of-concept, validating the biology and drug discovery approach.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-061516-044732
2017-06-20
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/biochem/86/1/annurev-biochem-061516-044732.html?itemId=/content/journals/10.1146/annurev-biochem-061516-044732&mimeType=html&fmt=ahah

Literature Cited

  1. Warburg O. 1.  1956. On the origin of cancer cells. Science 123:309–14 [Google Scholar]
  2. Vander Heiden MG, Cantley LC, Thompson CB. 2.  2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–33 [Google Scholar]
  3. Ward PS, Thompson CB. 3.  2012. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21:297–308 [Google Scholar]
  4. Adler E, Euler HV, Gunther G, Plass M. 4.  1939. isoCitric dehydrogenase and glutamic acid synthesis in animal tissues. Biochem. J. 33:1028–45 [Google Scholar]
  5. Siebert G, Dubuc J, Warner RC, Plaut GW. 5.  1957. The preparation of isocitric dehydrogenase from mammalian heart. J. Biol. Chem. 226:965–75 [Google Scholar]
  6. Dalziel K. 6.  1980. Isocitrate dehydrogenase and related oxidative decarboxylases. FEBS Lett 117:Suppl.K45–55 [Google Scholar]
  7. Grissom CB, Cleland WW. 7.  1988. Isotope effect studies of chicken liver NADP malic enzyme: role of the metal ion and viscosity dependence. Biochemistry 27:2927–34 [Google Scholar]
  8. Northrop DB, Cleland WW. 8.  1974. The kinetics of pig heart triphosphopyridine nucleotide-isocitrate dehydrogenase. II. Dead-end and multiple inhibition studies. J. Biol. Chem. 249:2928–31 [Google Scholar]
  9. Uhr ML, Thompson VW, Cleland WW. 9.  1974. The kinetics of pig heart triphosphopyridine nucleotide-isocitrate dehydrogenase. I. Initial velocity, substrate and product inhibition, and isotope exchange studies. J. Biol. Chem. 249:2920–27 [Google Scholar]
  10. Ochoa S. 10.  1948. Biosynthesis of tricarboxylic acids by carbon dioxide fixation; enzymatic mechanisms. J. Biol. Chem. 174:133–57 [Google Scholar]
  11. Dalziel K, Londesborough JC. 11.  1968. The mechanisms of reductive carboxylation reactions. Carbon dioxide or bicarbonate as substrate of nicotinamide-adenine dinucleotide phosphate-linked isocitrate dehydrogenase and malic enzyme. Biochem. J. 110:223–30 [Google Scholar]
  12. Des Rosiers C, Fernandez CA, David F, Brunengraber H. 12.  1994. Reversibility of the mitochondrial isocitrate dehydrogenase reaction in the perfused rat liver. Evidence from isotopomer analysis of citric acid cycle intermediates. J. Biol. Chem. 269:27179–82 [Google Scholar]
  13. Londesborough JC, Dalziel K. 13.  1968. The equilibrium constant of the isocitrate dehydrogenase reaction. Biochem. J. 110:217–22 [Google Scholar]
  14. Sugden PH, Newsholme EA. 14.  1975. Activities of citrate synthase, NAD+-linked and NADP+-linked isocitrate dehydrogenases, glutamate dehydrogenase, aspartate aminotransferase and alanine aminotransferase in nervous tissues from vertebrates and invertebrates. Biochem. J. 150:105–11 [Google Scholar]
  15. Wanders RJ, van Doorn HE, Tager JM. 15.  1981. The energy-linked transhydrogenase in rat liver in relation to the reductive carboxylation of 2-oxoglutarate. Eur. J. Biochem. 116:609–14 [Google Scholar]
  16. Sazanov LA, Jackson JB. 16.  1994. Proton-translocating transhydrogenase and NAD- and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic acid cycle activity in mitochondria. FEBS Lett 344:109–16 [Google Scholar]
  17. Lee SM, Koh HJ, Park DC, Song BJ, Huh TL, Park JW. 17.  2002. Cytosolic NADP+-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic. Biol. Med. 32:1185–96 [Google Scholar]
  18. Xu X, Zhao J, Xu Z, Peng B, Huang Q. 18.  et al. 2004. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. J. Biol. Chem. 279:33946–57 [Google Scholar]
  19. Bogdanovic E. 19.  2015. IDH1, lipid metabolism and cancer: shedding new light on old ideas. Biochim. Biophys. Acta 1850:1781–85 [Google Scholar]
  20. Koh HJ, Lee SM, Son BG, Lee SH, Ryoo ZY. 20.  et al. 2004. Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. J. Biol. Chem. 279:39968–74 [Google Scholar]
  21. Bogdanovic E, Sadri AR, Catapano M, Vance JE, Jeschke MG. 21.  2014. IDH1 regulates phospholipid metabolism in developing astrocytes. Neurosci. Lett. 582:87–92 [Google Scholar]
  22. Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J. 22.  et al. 2012. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:380–84 [Google Scholar]
  23. Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB. 23.  et al. 2012. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481:385–88 [Google Scholar]
  24. Jiang L, Shestov AA, Swain P, Yang C, Parker SJ. 24.  et al. 2016. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature 532:255–58 [Google Scholar]
  25. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ. 25.  et al. 2008. An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–12 [Google Scholar]
  26. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA. 26.  et al. 2009. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med 360:765–73 [Google Scholar]
  27. Waitkus MS, Diplas BH, Yan H. 27.  2016. Isocitrate dehydrogenase mutations in gliomas. Neuro-Oncology 18:16–26 [Google Scholar]
  28. Medeiros BC, Fathi AT, DiNardo CD, Pollyea DA, Chan SM, Swords R. 28.  2017. Isocitrate dehydrogenase mutations in myeloid malignancies. Leukemia 31:272–81 [Google Scholar]
  29. Borger DR, Tanabe KK, Fan KC, Lopez HU, Fantin VR. 29.  et al. 2012. Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist 17:72–79 [Google Scholar]
  30. Amary MF, Bacsi K, Maggiani F, Damato S, Halai D. 30.  et al. 2011. IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J. Pathol 224:334–43 [Google Scholar]
  31. Lai A, Kharbanda S, Pope WB, Tran A, Solis OE. 31.  et al. 2011. Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. J. Clin. Oncol. 29:4482–90 [Google Scholar]
  32. Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A. 32.  2008. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116:597–602 [Google Scholar]
  33. Zhao S, Lin Y, Xu W, Jiang W, Zha Z. 33.  et al. 2009. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1α.. Science 324:261–65 [Google Scholar]
  34. Dang L, White DW, Gross S, Bennett BD, Bittinger MA. 34.  et al. 2009. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–44 [Google Scholar]
  35. Wu YD, Houk KN. 35.  1991. Theoretical evaluation of conformational preferences of NAD+ and NADH: an approach to understanding the stereospecificity of NAD+/NADH-dependent dehydrogenases. J. Am. Chem. Soc. 113:2353–58 [Google Scholar]
  36. Struys EA, Jansen EE, Verhoeven NM, Jakobs C. 36.  2004. Measurement of urinary d- and l-2-hydroxyglutarate enantiomers by stable-isotope-dilution liquid chromatography–tandem mass spectrometry after derivatization with diacetyl-l-tartaric anhydride. Clin. Chem. 50:1391–95 [Google Scholar]
  37. Gross S, Cairns RA, Minden MD, Driggers EM, Bittinger MA. 37.  et al. 2010. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J. Exp. Med. 207:339–44 [Google Scholar]
  38. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD. 38.  et al. 2010. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–34 [Google Scholar]
  39. Ward PS, Cross JR, Lu C, Weigert O, Abel-Wahab O. 39.  et al. 2012. Identification of additional IDH mutations associated with oncometabolite R(−)-2-hydroxyglutarate production. Oncogene 31:2491–98 [Google Scholar]
  40. Pietrak B, Zhao H, Qi H, Quinn C, Gao E. 40.  et al. 2011. A tale of two subunits: how the neomorphic R132H IDH1 mutation enhances production of αHG. Biochemistry 50:4804–12 [Google Scholar]
  41. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P. 41.  et al. 2016. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374:2209–21 [Google Scholar]
  42. Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD. 42.  2014. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510:298–302 [Google Scholar]
  43. Lewis CA, Parker SJ, Fiske BP, McCloskey D, Gui DY. 43.  et al. 2014. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol. Cell 55:253–63 [Google Scholar]
  44. Shi J, Zuo H, Ni L, Xia L, Zhao L. 44.  et al. 2014. An IDH1 mutation inhibits growth of glioma cells via GSH depletion and ROS generation. Neurol. Sci. 35:839–45 [Google Scholar]
  45. Molenaar RJ, Botman D, Smits MA, Hira VV, van Lith SA. 45.  et al. 2015. Radioprotection of IDH1-mutated cancer cells by the IDH1-mutant inhibitor AGI-5198. Cancer Res 75:4790–802 [Google Scholar]
  46. Reitman ZJ, Jin G, Karoly ED, Spasojevic I, Yang J. 46.  et al. 2011. Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. PNAS 108:3270–75 [Google Scholar]
  47. Izquierdo-Garcia JL, Viswanath P, Eriksson P, Chaumeil MM, Pieper RO. 47.  et al. 2015. Metabolic reprogramming in mutant IDH1 glioma cells. PLOS ONE 10:e0118781 [Google Scholar]
  48. Ohka F, Ito M, Ranjit M, Senga T, Motomura A. 48.  et al. 2014. Quantitative metabolome analysis profiles activation of glutaminolysis in glioma with IDH1 mutation. Tumor Biol 35:5911–20 [Google Scholar]
  49. Emadi A, Jun SA, Tsukamoto T, Fathi AT, Minden MD, Dang CV. 49.  2014. Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations. Exp. Hematol. 42:247–51 [Google Scholar]
  50. Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG. 50.  et al. 2010. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res 70:8981–87 [Google Scholar]
  51. Chen R, Nishimura MC, Kharbanda S, Peale F, Deng Y. 51.  et al. 2014. Hominoid-specific enzyme GLUD2 promotes growth of IDH1R132H glioma. PNAS 111:14217–22 [Google Scholar]
  52. Chesnelong C, Chaumeil MM, Blough MD, Al-Najjar M, Stechishin OD. 52.  et al. 2014. Lactate dehydrogenase A silencing in IDH mutant gliomas. Neuro-Oncology 16:686–95 [Google Scholar]
  53. Izquierdo-Garcia JL, Viswanath P, Eriksson P, Cai L, Radoul M. 53.  et al. 2015. IDH1 mutation induces reprogramming of pyruvate metabolism. Cancer Res 75:2999–3009 [Google Scholar]
  54. Izquierdo-Garcia JL, Cai LM, Chaumeil MM, Eriksson P, Robinson AE. 54.  et al. 2014. Glioma cells with the IDH1 mutation modulate metabolic fractional flux through pyruvate carboxylase. PLOS ONE 9:e108289 [Google Scholar]
  55. Engqvist MK, Eßer C, Maier A, Lercher MJ, Maurino VG. 55.  2014. Mitochondrial 2-hydroxyglutarate metabolism. Mitochondrion 19:Part B275–81 [Google Scholar]
  56. Struys EA, Verhoeven NM, Brunengraber H, Jakobs C. 56.  2004. Investigations by mass isotopomer analysis of the formation of d-2-hydroxyglutarate by cultured lymphoblasts from two patients with d-2-hydroxyglutaric aciduria. FEBS Lett 557:115–20 [Google Scholar]
  57. Zhao G, Winkler ME. 57.  1996. A novel α-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria. J. Bacteriol. 178:232–39 [Google Scholar]
  58. Fan J, Teng X, Liu L, Mattaini KR, Looper RE. 58.  et al. 2015. Human phosphoglycerate dehydrogenase produces the oncometabolite d-2-hydroxyglutarate. ACS Chem. Biol. 10:510–16 [Google Scholar]
  59. Chalmers RA, Lawson AM, Watts RW, Tavill AS, Kamerling JP. 59.  et al. 1980. d-2-hydroxyglutaric aciduria: case report and biochemical studies. J. Inherit. Metab. Dis. 3:11–15 [Google Scholar]
  60. Rzem R, Vincent MF, Van Schaftingen E, Veiga-da-Cunha M. 60.  2007. l-2-hydroxyglutaric aciduria, a defect of metabolite repair. J. Inherit. Metab. Dis. 30:681–89 [Google Scholar]
  61. Intlekofer AM, Dematteo RG, Venneti S, Finley LW, Lu C. 61.  et al. 2015. Hypoxia induces production of l-2-hydroxyglutarate. Cell Metab 22:304–11 [Google Scholar]
  62. Kranendijk M, Struys EA, Salomons GS, Van der Knaap MS, Jakobs C. 62.  2012. Progress in understanding 2-hydroxyglutaric acidurias. J. Inherit. Metab. Dis. 35:571–87 [Google Scholar]
  63. Kranendijk M, Struys EA, van Schaftingen E, Gibson KM, Kanhai WA. 63.  et al. 2010. IDH2 mutations in patients with d-2-hydroxyglutaric aciduria. Science 330:336 [Google Scholar]
  64. Wang F, Travins J, Lin Z, Si Y, Chen Y. 64.  et al. 2016. A small molecule inhibitor of mutant IDH2 rescues cardiomyopathy in a d-2-hydroxyglutaric aciduria type II mouse model. J. Inherit. Metab. Dis. 39:807–20 [Google Scholar]
  65. Aghili M, Zahedi F, Rafiee E. 65.  2009. Hydroxyglutaric aciduria and malignant brain tumor: a case report and literature review. J. Neuro-Oncol. 91:233–36 [Google Scholar]
  66. Gelman SJ, Mahieu NG, Cho K, Llufrio EM, Wencewicz TA, Patti GJ. 66.  2015. Evidence that 2-hydroxyglutarate is not readily metabolized in colorectal carcinoma cells. Cancer Metab 3:13 [Google Scholar]
  67. Dang L, Jin S, Su SM. 67.  2010. IDH mutations in glioma and acute myeloid leukemia. Trends Mol. Med. 16:387–97 [Google Scholar]
  68. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J. 68.  et al. 2010. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–67 [Google Scholar]
  69. Clifton IJ, McDonough MA, Ehrismann D, Kershaw NJ, Granatino N, Schofield CJ. 69.  2006. Structural studies on 2-oxoglutarate oxygenases and related double-stranded β-helix fold proteins. J. Inorg. Biochem. 100:644–69 [Google Scholar]
  70. Chowdhury R, Yeoh KK, Tian YM, Hillringhaus L, Bagg EA. 70.  et al. 2011. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep 12:463–69 [Google Scholar]
  71. Xu W, Yang H, Liu Y, Yang Y, Wang P. 71.  et al. 2011. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30 [Google Scholar]
  72. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S. 72.  et al. 2012. IDH mutation impairs histone demeth-ylation and results in a block to cell differentiation. Nature 483:474–78 [Google Scholar]
  73. Baylin SB. 73.  2005. DNA methylation and gene silencing in cancer. Nat. Clin. Pract. Oncol. 2:Suppl. 1S4–11 [Google Scholar]
  74. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K. 74.  et al. 2010. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17:510–22 [Google Scholar]
  75. Turcan S, Rohle D, Goenka A, Walsh LA, Fang F. 75.  et al. 2012. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483:479–83 [Google Scholar]
  76. Chaturvedi A, Araujo Cruz MM, Jyotsana N, Sharma A, Yun H. 76.  et al. 2013. Mutant IDH1 promotes leukemogenesis in vivo and can be specifically targeted in human AML. Blood 122:2877–87 [Google Scholar]
  77. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S. 77.  et al. 2009. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360:2289–301 [Google Scholar]
  78. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H. 78.  et al. 2009. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–35 [Google Scholar]
  79. Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. 79.  2010. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–33 [Google Scholar]
  80. Sasaki M, Knobbe CB, Itsumi M, Elia AJ, Harris IS. 80.  et al. 2012. d-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev 26:2038–49 [Google Scholar]
  81. LaGory EL, Giaccia AJ. 81.  2016. The ever-expanding role of HIF in tumour and stromal biology. Nat. Cell Biol. 18:356–65 [Google Scholar]
  82. Semenza GL. 82.  2003. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3:721–32 [Google Scholar]
  83. Jin G, Reitman ZJ, Spasojevic I, Batinic-Haberle I, Yang J. 83.  et al. 2011. 2-Hydroxyglutarate production, but not dominant negative function, is conferred by glioma-derived NADP+-dependent isocitrate dehydrogenase mutations. PLOS ONE 6:e16812 [Google Scholar]
  84. Koivunen P, Lee S, Duncan CG, Lopez G, Lu G. 84.  et al. 2012. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483:484–88 [Google Scholar]
  85. Tarhonskaya H, Rydzik AM, Leung IK, Loik ND, Chan MC. 85.  et al. 2014. Non-enzymatic chemistry enables 2-hydroxyglutarate-mediated activation of 2-oxoglutarate oxygenases. Nat. Commun. 5:3423 [Google Scholar]
  86. Losman JA, Looper RE, Koivunen P, Lee S, Schneider RK. 86.  et al. 2013. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339:1621–25 [Google Scholar]
  87. Guitart AV, Subramani C, Armesilla-Diaz A, Smith G, Sepulveda C. 87.  et al. 2013. Hif-2α is not essential for cell-autonomous hematopoietic stem cell maintenance. Blood 122:1741–45 [Google Scholar]
  88. Chan SM, Thomas D, Corces-Zimmerman MR, Xavy S, Rastogi S. 88.  et al. 2015. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat. Med. 21:178–84 [Google Scholar]
  89. Kölker S, Pawlak V, Ahlemeyer B, Okun JG, Hörster F. 89.  et al. 2002. NMDA receptor activation and respiratory chain complex V inhibition contribute to neurodegeneration in d-2-hydroxyglutaric aciduria. Eur. J. Neurosci. 16:21–28 [Google Scholar]
  90. Li F, He X, Ye D, Lin Y, Yu H. 90.  et al. 2015. NADP+-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance. Mol. Cell 60:661–75 [Google Scholar]
  91. Jin Y, Elalaf H, Watanabe M, Tamaki S, Hineno S. 91.  et al. 2015. Mutant IDH1 dysregulates the differentiation of mesenchymal stem cells in association with gene-specific histone modifications to cartilage- and bone-related genes. PLOS ONE 10:e0131998 [Google Scholar]
  92. Saha SK, Parachoniak CA, Ghanta KS, Fitamant J, Ross KN. 92.  et al. 2014. Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer. Nature 513:110–14 [Google Scholar]
  93. Wang F, Travins J, DeLaBarre B, Penard-Lacronique V, Schalm S. 93.  et al. 2013. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340:622–26 [Google Scholar]
  94. Rohle D, Popovici-Muller J, Palaskas N, Turcan S, Grommes C. 94.  et al. 2013. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340:626–30 [Google Scholar]
  95. Turcan S, Fabius AW, Borodovsky A, Pedraza A, Brennan C. 95.  et al. 2013. Efficient induction of differentiation and growth inhibition in IDH1 mutant glioma cells by the DNMT inhibitor decitabine. Oncotarget 4:1729–36 [Google Scholar]
  96. Brooks E, Wu X, Hanel A, Nguyen S, Wang J. 96.  et al. 2014. Identification and characterization of small-molecule inhibitors of the R132H/R132H mutant isocitrate dehydrogenase 1 homodimer and R132H/wild-type heterodimer. J. Biomol. Screen. 19:1193–200 [Google Scholar]
  97. Davis MI, Gross S, Shen M, Straley KS, Pragani R. 97.  et al. 2014. Biochemical, cellular and biophysical characterization of a potent inhibitor of mutant isocitrate dehydrogenase IDH1. J. Biol. Chem. 289:13717–25 [Google Scholar]
  98. Deng G, Shen J, Yin M, McManus J, Mathieu M. 98.  et al. 2015. Selective inhibition of mutant isocitrate dehydrogenase 1 (IDH1) via disruption of a metal binding network by an allosteric small molecule. J. Biol. Chem. 290:762–74 [Google Scholar]
  99. Okoye-Okafor UC, Bartholdy B, Cartier J, Gao EN, Pietrak B. 99.  et al. 2015. New IDH1 mutant inhibitors for treatment of acute myeloid leukemia. Nat. Chem. Biol. 11:878–86 [Google Scholar]
  100. Popovici-Muller J, Saunders JO, Salituro FG, Travins JM, Yan S. 100.  et al. 2012. Discovery of the first potent inhibitors of mutant IDH1 that lower tumor 2-HG in vivo. ACS Med. Chem. Lett 3:850–55 [Google Scholar]
  101. Zheng B, Yao Y, Liu Z, Deng L, Anglin JL. 101.  et al. 2013. Crystallographic investigation and selective inhibition of mutant isocitrate dehydrogenase. ACS Med. Chem. Lett 4:542–46 [Google Scholar]
  102. Halford B. 102.  2015. Drug candidates unveiled at “First-Time Disclosures” symposium in Boston. Chem. Eng. News 93:3838–40 [Google Scholar]
  103. Stein EM, DiNardo C, Altman JK, Collins R, DeAngelo DJ. 103.  et al. 2015. Safety and efficacy of AG-221, a potent inhibitor of mutant IDH2 that promotes differentiation of myeloid cells in patients with advanced hematologic malignancies: results of a phase 1/2 trial. Blood 126:23323 Abstr [Google Scholar]
  104. DiNardo C, de Botton S, Pollyea DA, Stein EM, Fathi AT. 104.  et al. 2015. Molecular profiling and relationship with clinical response in patients with IDH1 mutation-positive hematologic malignancies receiving AG-120, a first-in-class potent inhibitor of mutant IDH1, in addition to data from the completed dose escalation portion of the phase 1 study. Blood 126:231306 Abstr [Google Scholar]
  105. Birendra KC, DiNardo CD. 105.  2016. Evidence for clinical differentiation and differentiation syndrome in patients with acute myeloid leukemia and IDH1 mutations treated with the targeted mutant IDH1 inhibitor, AG-120. Clin. Lymphoma Myeloma Leuk. 16:460–65 [Google Scholar]
  106. de Botton S, Pollyea DA, Stein EM, DiNardo C, Fathi AT. 106.  et al. 2015. Clinical safety and activity of AG-120, a first-in-class, potent inhibitor of the IDH1 mutant protein, in a phase 1 study of patients with advanced IDH1-mutant hematologic malignancies. Haematologica 100:Suppl. 1214–15 Abstr [Google Scholar]
  107. Quivoron C, David M, Straley K, Travins J, Kim H. 107.  et al. 2014. AG-221, an oral, selective, first-in-class, potent IDH2–R140Q mutant inhibitor, induces differentiation in a xenotransplant model. Blood 124:213735 Abstr [Google Scholar]
  108. Davis M, Pragani R, Popovici-Muller J, Gross S, Thorne N. 108.  et al. 2010. ML309: a potent inhibitor of R132H mutant IDH1 capable of reducing 2-hydroxyglutarate production in U87 MG glioblastoma cells. Probe Reports from the NIH Molecular Libraries Program Bethesda, MD: Nat. Cent. Biotechnol. Inf. [Google Scholar]
  109. Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P. 109.  et al. 2016. Breaking cryo-EM resolution barriers to facilitate drug discovery. Cell 165:1698–707 [Google Scholar]
  110. Law JM, Stark SC, Liu K, Liang NE, Hussain MM. 110.  et al. 2016. Discovery of 8-membered ring sulfonamides as inhibitors of oncogenic mutant isocitrate dehydrogenase 1. ACS Med. Chem. Lett 7:944–49 [Google Scholar]
/content/journals/10.1146/annurev-biochem-061516-044732
Loading
/content/journals/10.1146/annurev-biochem-061516-044732
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error