1932

Abstract

Subclonal cancer populations change spatially and temporally during the disease course. Studies are revealing branched evolutionary cancer growth with low-frequency driver events present in subpopulations of cells, providing escape mechanisms for targeted therapeutic approaches. Despite such complexity, evidence is emerging for parallel evolution of subclones, mediated through distinct somatic events converging on the same gene, signal transduction pathway, or protein complex in different subclones within the same tumor. Tumors may follow gradualist paths (microevolution) as well as major shifts in evolutionary trajectories (macroevolution). Although macroevolution has been subject to considerable controversy in post-Darwinian evolutionary theory, we review evidence that such nongradual, saltatory leaps, driven through chromosomal rearrangements or genome doubling, may be particularly relevant to tumor evolution. Adapting cancer care to the challenges imposed by tumor micro- and macroevolution and developing deeper insight into parallel evolutionary events may prove central to improving outcome and reducing drug development costs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120213-092314
2014-11-23
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/genet/48/1/annurev-genet-120213-092314.html?itemId=/content/journals/10.1146/annurev-genet-120213-092314&mimeType=html&fmt=ahah

Literature Cited

  1. Adams KL, Wendel JF. 1.  2005. Polyploidy and genome evolution in plants. Curr. Opin. Plant Biol. 8:135–41 [Google Scholar]
  2. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S. 2.  et al. 2013. Signatures of mutational processes in human cancer. Nature 500:415–21 [Google Scholar]
  3. Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR. 3.  2013. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 3:246–59 [Google Scholar]
  4. 4. Am. Cancer Soc 2012. Cancer Facts & Figures 2012. Atlanta, GA: Am. Cancer Soc. http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-031941.pdf
  5. Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y. 5.  et al. 2011. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469:356–61 [Google Scholar]
  6. Armitage P, Doll R. 6.  1954. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer 8:1–12 [Google Scholar]
  7. Awad MM, Engelman JA, Shaw AT. 7.  2013. Acquired resistance to crizotinib from a mutation in CD74-ROS1. N. Engl. J. Med. 369:1173 [Google Scholar]
  8. Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A. 8.  et al. 2013. Punctuated evolution of prostate cancer genomes. Cell 153:666–77 [Google Scholar]
  9. Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M. 9.  et al. 2012. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet. 44:685–89 [Google Scholar]
  10. Bekaert M, Edger PP, Pires JC, Conant GC. 10.  2011. Two-phase resolution of polyploidy in the Arabidopsis metabolic network gives rise to relative and absolute dosage constraints. Plant Cell 23:1719–28 [Google Scholar]
  11. Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S. 11.  et al. 2010. Signatures of mutation and selection in the cancer genome. Nature 463:893–98 [Google Scholar]
  12. Birkbak NJ, Eklund AC, Li Q, McClelland SE, Endesfelder D. 12.  et al. 2011. Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res. 71:3447–52 [Google Scholar]
  13. Boland CR, Sato J, Appelman HD, Bresalier RS, Feinberg AP. 13.  1995. Microallelotyping defines the sequence and tempo of allelic losses at tumour suppressor gene loci during colorectal cancer progression. Nat. Med. 1:902–9 [Google Scholar]
  14. Bonnet D, Dick JE. 14.  1997. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3:730–37 [Google Scholar]
  15. Brown SD, Warren RL, Gibb EA, Martin SD, Spinelli JJ. 14a.  et al. 2014. Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res. 24:743–50 [Google Scholar]
  16. Burrell RA, McGranahan N, Bartek J, Swanton C. 15.  2013. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501:338–45 [Google Scholar]
  17. Cahill DP, Kinzler KW, Vogelstein B, Lengauer C. 16.  1999. Genetic instability and Darwinian selection in tumours. Trends Cell Biol. 9:M57–60 [Google Scholar]
  18. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED. 17.  et al. 2010. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467:1109–13 [Google Scholar]
  19. 18. Cancer Genome Atlas Netw 2011. Integrated genomic analyses of ovarian carcinoma. Nature 474:609–15 [Google Scholar]
  20. 19. Cancer Genome Atlas Netw 2012. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–37 [Google Scholar]
  21. Carter SL, Cibulskis K, Helman E, McKenna A, Shen H. 20.  et al. 2012. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30:413–21 [Google Scholar]
  22. Chen J, Li Y, Yu TS, McKay RM, Burns DK. 21.  et al. 2012. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522–26 [Google Scholar]
  23. Church DN, Briggs SE, Palles C, Domingo E, Kearsey SJ. 22.  et al. 2013. DNA polymerase ε and δ exonuclease domain mutations in endometrial cancer. Hum. Mol. Genet. 22:2820–28 [Google Scholar]
  24. Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C. 23.  2013. Emerging landscape of oncogenic signatures across human cancers. Nat. Genet. 45:1127–33 [Google Scholar]
  25. Cleary AS, Leonard TL, Gestl SA, Gunther EJ. 23a.  2014. Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature 508:113–18 [Google Scholar]
  26. Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV. 24.  et al. 2012. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:53–58 [Google Scholar]
  27. Davoli T, de Lange T. 25.  2011. The causes and consequences of polyploidy in normal development and cancer. Annu. Rev. Cell Dev. Biol. 27:585–610 [Google Scholar]
  28. Davoli T, Denchi EL, de Lange T. 26.  2010. Persistent telomere damage induces bypass of mitosis and tetraploidy. Cell 141:81–93 [Google Scholar]
  29. de Bruin EC, Taylor TB, Swanton C. 27.  2013. Intra-tumor heterogeneity: lessons from microbial evolution and clinical implications. Genome Med. 5:101 [Google Scholar]
  30. Dewhurst SM, McGranahan N, Burrell RA, Rowan AJ, Gronroos E. 28.  et al. 2014. Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. Cancer Discov. 4:175–85 [Google Scholar]
  31. Diaz LA Jr, Williams RT, Wu J, Kinde I, Hecht JR. 29.  et al. 2012. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486:537–40 [Google Scholar]
  32. Ding L, Ellis MJ, Li S, Larson DE, Chen K. 30.  et al. 2010. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464:999–1005 [Google Scholar]
  33. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC. 31.  et al. 2012. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481:506–10 [Google Scholar]
  34. Duelli DM, Padilla-Nash HM, Berman D, Murphy KM, Ried T, Lazebnik Y. 32.  2007. A virus causes cancer by inducing massive chromosomal instability through cell fusion. Curr. Biol. 17:431–37 [Google Scholar]
  35. Duesberg P, Stindl R, Hehlmann R. 33.  2001. Origin of multidrug resistance in cells with and without multidrug resistance genes: chromosome reassortments catalyzed by aneuploidy. Proc. Natl. Acad. Sci. USA 98:11283–88 [Google Scholar]
  36. Duncan AW, Hanlon Newell AE, Bi W, Finegold MJ, Olson SB. 34.  et al. 2012. Aneuploidy as a mechanism for stress-induced liver adaptation. J. Clin. Investig. 122:3307–15 [Google Scholar]
  37. Duncan AW, Taylor MH, Hickey RD, Hanlon Newell AE, Lenzi ML. 35.  et al. 2010. The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature 467:707–10 [Google Scholar]
  38. Ellis MJ, Ding L, Shen D, Luo J, Suman VJ. 36.  et al. 2012. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486:353–60 [Google Scholar]
  39. Ene CI, Fine HA. 37.  2011. Many tumors in one: a daunting therapeutic prospect. Cancer Cell 20:695–97 [Google Scholar]
  40. Eshleman JR, Lang EZ, Bowerfind GK, Parsons R, Vogelstein B. 38.  et al. 1995. Increased mutation rate at the hprt locus accompanies microsatellite instability in colon cancer. Oncogene 10:33–37 [Google Scholar]
  41. Feldser DM, Kostova KK, Winslow MM, Taylor SE, Cashman C. 39.  et al. 2010. Stage-specific sensitivity to p53 restoration during lung cancer progression. Nature 468:572–75 [Google Scholar]
  42. France D, Hebert PDN. 40.  1994. Hybridization and origins of polyploidy. Proc. R. Soc. Lond. Ser. B 258:1352141–46 [Google Scholar]
  43. Frank NY, Schatton T, Frank MH. 41.  2010. The therapeutic promise of the cancer stem cell concept. J. Clin. Investig. 120:41–50 [Google Scholar]
  44. Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D. 42.  2005. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437:1043–47 [Google Scholar]
  45. Galipeau PC, Cowan DS, Sanchez CA, Barrett MT, Emond MJ. 43.  et al. 1996. 17p (p53) allelic losses, 4N (G2/tetraploid) populations, and progression to aneuploidy in Barrett's esophagus. Proc. Natl. Acad. Sci. USA 93:7081–84 [Google Scholar]
  46. Gatenby RA, Silva AS, Gillies RJ, Frieden BR. 44.  2009. Adaptive therapy. Cancer Res. 69:4894–903 [Google Scholar]
  47. Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP. 45.  et al. 2014. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46:225–33 [Google Scholar]
  48. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D. 46.  et al. 2012. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366:883–92 [Google Scholar]
  49. Gerlinger M, Swanton C. 47.  2010. How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br. J. Cancer 103:1139–43 [Google Scholar]
  50. German J. 48.  1980. Chromosome-breakage syndromes: different genes, different treatments, different cancers. Basic Life Sci. 15:429–39 [Google Scholar]
  51. Gibson TC, Scheppe ML, Cox EC. 49.  1970. Fitness of an Escherichia coli mutator gene. Science 169:686–88 [Google Scholar]
  52. Goldschmidt R. 50.  1982. The Material Basis of Evolution: Reissued New Haven, CT: Yale Univ.
  53. Gorla GR, Malhi H, Gupta S. 51.  2001. Polyploidy associated with oxidative injury attenuates proliferative potential of cells. J. Cell Sci. 114:2943–51 [Google Scholar]
  54. Govindan R, Ding L, Griffith M, Subramanian J, Dees ND. 52.  et al. 2012. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 150:1121–34 [Google Scholar]
  55. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM. 53.  et al. 2012. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487:239–43 [Google Scholar]
  56. Greaves M, Maley CC. 54.  2012. Clonal evolution in cancer. Nature 481:306–13 [Google Scholar]
  57. Greaves M. 55.  2013. Cancer stem cells as “units of selection.”. Evol. Appl. 6:102–8 [Google Scholar]
  58. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C. 56.  et al. 2007. Patterns of somatic mutation in human cancer genomes. Nature 446:153–58 [Google Scholar]
  59. Haffner MC, Mosbruger T, Esopi DM, Fedor H, Heaphy CM. 57.  et al. 2013. Tracking the clonal origin of lethal prostate cancer. J. Clin. Investig. 123:4918–22 [Google Scholar]
  60. Hallatschek O, Nelson DR. 58.  2010. Life at the front of an expanding population. Evolution 64:193–206 [Google Scholar]
  61. Hennessy BT, Timms KM, Carey MS, Gutin A, Meyer LA. 59.  et al. 2010. Somatic mutations in BRCA1 and BRCA2 could expand the number of patients that benefit from poly (ADP ribose) polymerase inhibitors in ovarian cancer. J. Clin. Oncol. 28:3570–76 [Google Scholar]
  62. Herman JG, Umar A, Polyak K, Graff JR, Ahuja N. 60.  et al. 1998. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl. Acad. Sci. USA 95:6870–75 [Google Scholar]
  63. Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB. 61.  et al. 2005. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7:469–83 [Google Scholar]
  64. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M. 62.  et al. 2012. A landscape of driver mutations in melanoma. Cell 150:251–63 [Google Scholar]
  65. Holland AJ, Cleveland DW. 63.  2009. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat. Rev. Mol. Cell Biol. 10:478–87 [Google Scholar]
  66. Huminiecki L, Conant GC. 64.  2012. Polyploidy and the evolution of complex traits. Int. J. Evol. Biol. 2012:292068 [Google Scholar]
  67. Hunter C, Smith R, Cahill DP, Stephens P, Stevens C. 65.  et al. 2006. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res. 66:3987–91 [Google Scholar]
  68. Inda MM, Bonavia R, Mukasa A, Narita Y, Sah DW. 66.  et al. 2010. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev. 24:1731–45 [Google Scholar]
  69. Jablonski D. 67.  2001. Lessons from the past: evolutionary impacts of mass extinctions. Proc. Natl. Acad. Sci. USA 98:5393–98 [Google Scholar]
  70. Jamal-Haniani M, Hackshaw A, Ngai Y, Shaw J, Dive C. 67a.  et al. 2014. Tracking genomic cancer evolution for precision medicine: the lung TRACERx study. PLOS Biol. 12:e1001906 [Google Scholar]
  71. Johnson BE, Mazor T, Hong C, Barnes M, Aihara K. 68.  et al. 2014. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343:189–93 [Google Scholar]
  72. Jones AM, Thirlwell C, Howarth KM, Graham T, Chambers W. 69.  et al. 2007. Analysis of copy number changes suggests chromosomal instability in a minority of large colorectal adenomas. J. Pathol. 213:249–56 [Google Scholar]
  73. Jonkers YM, Claessen SM, Perren A, Schmid S, Komminoth P. 70.  et al. 2005. Chromosomal instability predicts metastatic disease in patients with insulinomas. Endocr. Relat. Cancer 12:435–47 [Google Scholar]
  74. Kamb A, Wee S, Lengauer C. 71.  2007. Why is cancer drug discovery so difficult?. Nat. Rev. Drug Discov. 6:115–20 [Google Scholar]
  75. Keats JJ, Chesi M, Egan JB, Garbitt VM, Palmer SE. 72.  et al. 2012. Clonal competition with alternating dominance in multiple myeloma. Blood 120:1067–76 [Google Scholar]
  76. Kern SE. 73.  2012. Why your new cancer biomarker may never work: recurrent patterns and remarkable diversity in biomarker failures. Cancer Res. 72:6097–101 [Google Scholar]
  77. Klein A, Li N, Nicholson JM, McCormack AA, Graessmann A, Duesberg P. 74.  2010. Transgenic oncogenes induce oncogene-independent cancers with individual karyotypes and phenotypes. Cancer Genet. Cytogenet. 200:79–99 [Google Scholar]
  78. Korona R, Nakatsu CH, Forney LJ, Lenski RE. 75.  1994. Evidence for multiple adaptive peaks from populations of bacteria evolving in a structured habitat. Proc. Natl. Acad. Sci. USA 91:9037–41 [Google Scholar]
  79. Lada AG, Dhar A, Boissy RJ, Hirano M, Rubel AA. 76.  et al. 2012. AID/APOBEC cytosine deaminase induces genome-wide kataegis. Biol. Direct 7:47 [Google Scholar]
  80. Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K. 77.  et al. 2013. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152:714–26 [Google Scholar]
  81. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA. 78.  et al. 2014. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505:495–501 [Google Scholar]
  82. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K. 79.  et al. 2013. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–18 [Google Scholar]
  83. Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J. 80.  et al. 1993. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75:1215–25 [Google Scholar]
  84. Lee AJ, Endesfelder D, Rowan AJ, Walther A, Birkbak NJ. 81.  et al. 2011. Chromosomal instability confers intrinsic multidrug resistance. Cancer Res. 71:1858–70 [Google Scholar]
  85. Lee RS, Stewart C, Carter SL, Ambrogio L, Cibulskis K. 82.  et al. 2012. A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J. Clin. Investig. 122:2983–88 [Google Scholar]
  86. Leedham S, Tomlinson I. 83.  2012. The continuum model of selection in human tumors: general paradigm or niche product?. Cancer Res. 72:3131–34 [Google Scholar]
  87. Lengauer C, Kinzler KW, Vogelstein B. 84.  1997. Genetic instability in colorectal cancers. Nature 386:623–27 [Google Scholar]
  88. Lengauer C, Kinzler KW, Vogelstein B. 85.  1998. Genetic instabilities in human cancers. Nature 396:643–49 [Google Scholar]
  89. Liegl B, Kepten I, Le C, Zhu M, Demetri GD. 86.  et al. 2008. Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J. Pathol. 216:64–74 [Google Scholar]
  90. Liu P, Erez A, Nagamani SC, Dhar SU, Kolodziejska KE. 87.  et al. 2011. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146:889–903 [Google Scholar]
  91. Loeb LA. 88.  1991. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 51:3075–79 [Google Scholar]
  92. Loh E, Salk JJ, Loeb LA. 89.  2010. Optimization of DNA polymerase mutation rates during bacterial evolution. Proc. Natl. Acad. Sci. USA 107:1154–59 [Google Scholar]
  93. Lv L, Zhang T, Yi Q, Huang Y, Wang Z. 90.  et al. 2012. Tetraploid cells from cytokinesis failure induce aneuploidy and spontaneous transformation of mouse ovarian surface epithelial cells. Cell Cycle 11:2864–75 [Google Scholar]
  94. Maharjan R, Seeto S, Notley-McRobb L, Ferenci T. 91.  2006. Clonal adaptive radiation in a constant environment. Science 313:514–17 [Google Scholar]
  95. Maharjan RP, Ferenci T, Reeves PR, Li Y, Liu B, Wang L. 92.  2012. The multiplicity of divergence mechanisms in a single evolving population. Genome Biol. 13:R41 [Google Scholar]
  96. Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B. 93.  et al. 2008. Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 359:366–77 [Google Scholar]
  97. Maley CC, Galipeau PC, Finley JC, Wongsurawat VJ, Li X. 94.  et al. 2006. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat. Genet. 38:468–73 [Google Scholar]
  98. Martin SL, Husband BC. 95.  2012. Whole genome duplication affects evolvability of flowering time in an autotetraploid plant. PLOS ONE 7:e44784 [Google Scholar]
  99. McGranahan N, Burrell RA, Endesfelder D, Novelli MR, Swanton C. 96.  2012. Cancer chromosomal instability: therapeutic and diagnostic challenges. “Exploring aneuploidy: the significance of chromosomal imbalance” review series. EMBO Rep. 13:528–38 [Google Scholar]
  100. Meacham CE, Morrison SJ. 97.  2013. Tumour heterogeneity and cancer cell plasticity. Nature 501:328–37 [Google Scholar]
  101. Merlo LM, Maley CC. 98.  2010. The role of genetic diversity in cancer. J. Clin. Investig. 120:401–3 [Google Scholar]
  102. Merlo LM, Shah NA, Li X, Blount PL, Vaughan TL. 99.  et al. 2010. A comprehensive survey of clonal diversity measures in Barrett's esophagus as biomarkers of progression to esophageal adenocarcinoma. Cancer Prev. Res. 3:1388–97 [Google Scholar]
  103. Moolgavkar SH, Knudson AG Jr. 100.  1981. Mutation and cancer: a model for human carcinogenesis. J. Natl. Cancer Inst. 66:1037–52 [Google Scholar]
  104. Muller HJ. 101.  1964. The relation of recombination to mutational advance. Mutat. Res. 106:2–9 [Google Scholar]
  105. Navin N, Kendall J, Troge J, Andrews P, Rodgers L. 102.  et al. 2011. Tumour evolution inferred by single-cell sequencing. Nature 472:90–94 [Google Scholar]
  106. Navin N, Krasnitz A, Rodgers L, Cook K, Meth J. 103.  et al. 2010. Inferring tumor progression from genomic heterogeneity. Genome Res. 20:68–80 [Google Scholar]
  107. Nguyen HG, Makitalo M, Yang D, Chinnappan D, St Hilaire C, Ravid K. 104.  2009. Deregulated Aurora-B induced tetraploidy promotes tumorigenesis. FASEB J. 23:2741–48 [Google Scholar]
  108. Nikolaev SI, Sotiriou SK, Pateras IS, Santoni F, Sougioultzis S. 105.  et al. 2012. A single-nucleotide substitution mutator phenotype revealed by exome sequencing of human colon adenomas. Cancer Res. 72:6279–89 [Google Scholar]
  109. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD. 106.  et al. 2012. Mutational processes molding the genomes of 21 breast cancers. Cell 149:979–93 [Google Scholar]
  110. Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD. 107.  et al. 2012. The life history of 21 breast cancers. Cell 149:994–1007 [Google Scholar]
  111. Notta F, Mullighan CG, Wang JC, Poeppl A, Doulatov S. 108.  et al. 2011. Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature 469:362–67 [Google Scholar]
  112. Nowell PC. 109.  1976. The clonal evolution of tumor cell populations. Science 194:23–28 [Google Scholar]
  113. 110. OMIM 2014. Online Mendelian inheritance in man. http://omim.org/
  114. Otto SP, Whitton J. 111.  2000. Polyploid incidence and evolution. Annu. Rev. Genet. 34:401–37 [Google Scholar]
  115. Palles C, Cazier JB, Howarth KM, Domingo E, Jones AM. 112.  et al. 2013. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat. Genet. 45:136–44 [Google Scholar]
  116. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G. 113.  et al. 2013. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122:3616–27 [Google Scholar]
  117. Rivlin N, Brosh R, Oren M, Rotter V. 114.  2011. Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer 2:466–74 [Google Scholar]
  118. Roche-Lestienne C, Soenen-Cornu V, Grardel-Duflos N, Lai JL, Philippe N. 115.  et al. 2002. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood 100:1014–18 [Google Scholar]
  119. Roylance R, Endesfelder D, Gorman P, Burrell RA, Sander J. 116.  et al. 2011. Relationship of extreme chromosomal instability with long-term survival in a retrospective analysis of primary breast cancer. Cancer Epidemiol. Biomark. Prev. 20:2183–94 [Google Scholar]
  120. Shackney SE, Smith CA, Miller BW, Burholt DR, Murtha K. 117.  et al. 1989. Model for the genetic evolution of human solid tumors. Cancer Res. 49:3344–54 [Google Scholar]
  121. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL. 118.  et al. 2002. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2:117–25 [Google Scholar]
  122. Shah SP, Morin RD, Khattra J, Prentice L, Pugh T. 119.  et al. 2009. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461:809–13 [Google Scholar]
  123. Shah SP, Roth A, Goya R, Oloumi A, Ha G. 120.  et al. 2012. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486:395–99 [Google Scholar]
  124. Simillion C, Vandepoele K, Van Montagu MC, Zabeau M, Van de Peer Y. 121.  2002. The hidden duplication past of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 99:13627–32 [Google Scholar]
  125. Snuderl M, Fazlollahi L, Le LP, Nitta M, Zhelyazkova BH. 122.  et al. 2011. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell 20:810–17 [Google Scholar]
  126. Sottoriva A, Vermeulen L, Tavare S. 123.  2011. Modeling evolutionary dynamics of epigenetic mutations in hierarchically organized tumors. PLOS Comput. Biol. 7:e1001132 [Google Scholar]
  127. Sprouffske K, Merlo LM, Gerrish PJ, Maley CC, Sniegowski PD. 124.  2012. Cancer in light of experimental evolution. Curr. Biol. 22:R762–71 [Google Scholar]
  128. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR. 125.  et al. 2011. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40 [Google Scholar]
  129. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C. 126.  et al. 2012. The landscape of cancer genes and mutational processes in breast cancer. Nature 486:400–4 [Google Scholar]
  130. Su KY, Chen HY, Li KC, Kuo ML, Yang JC. 127.  et al. 2012. Pretreatment epidermal growth factor receptor (EGFR) T790M mutation predicts shorter EGFR tyrosine kinase inhibitor response duration in patients with non-small-cell lung cancer. J. Clin. Oncol. 30:433–40 [Google Scholar]
  131. Swanton C. 128.  2012. Intratumor heterogeneity: evolution through space and time. Cancer Res. 72:194875–82 [Google Scholar]
  132. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y. 129.  et al. 2010. Integrative genomic profiling of human prostate cancer. Cancer Cell 18:11–22 [Google Scholar]
  133. Taylor TB, Johnson LJ, Jackson RW, Brockhurst MA, Dash PR. 130.  2013. First steps in experimental cancer evolution. Evol. Appl. 6:535–48 [Google Scholar]
  134. Thakur MD, Salangsang F, Landman AS, Sellers WR, Pryer NK. 131.  et al. 2013. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 494:7436251–55 [Google Scholar]
  135. Thirlwell C, Will OC, Domingo E, Graham TA, McDonald SA. 132.  et al. 2010. Clonality assessment and clonal ordering of individual neoplastic crypts shows polyclonality of colorectal adenomas. Gastroenterology 138:1441–54 [Google Scholar]
  136. Thompson DA, Desai MM, Murray AW. 133.  2006. Ploidy controls the success of mutators and nature of mutations during budding yeast evolution. Curr. Biol. 16:1581–90 [Google Scholar]
  137. Thompson SL, Compton DA. 134.  2011. Chromosomes and cancer cells. Chromosome Res. 19:433–44 [Google Scholar]
  138. Tomasetti C, Vogelstein B, Parmigiani G. 135.  2013. Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc. Natl. Acad. Sci. USA 110:1999–2004 [Google Scholar]
  139. Tomlinson IP, Novelli MR, Bodmer WF. 136.  1996. The mutation rate and cancer. Proc. Natl. Acad. Sci. USA 93:1483–90 [Google Scholar]
  140. Trautmann K, Terdiman JP, French AJ, Roydasgupta R, Sein N. 137.  et al. 2006. Chromosomal instability in microsatellite-unstable and stable colon cancer. Clin. Cancer Res. 12:6379–85 [Google Scholar]
  141. von Hansemann D. 138.  1890. Ueber asymmetriche Zelltheilung in epithel Krebsen und deren biologische Bedeutung. Virchow's Arch. Pathol. Anat. 119:299 [Google Scholar]
  142. Welch JS, Ley TJ, Link DC, Miller CA, Larson DE. 139.  et al. 2012. The origin and evolution of mutations in acute myeloid leukemia. Cell 150:264–78 [Google Scholar]
  143. Wilson BG, Roberts CW. 140.  2011. SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer 11:481–92 [Google Scholar]
  144. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T. 141.  et al. 2007. The genomic landscapes of human breast and colorectal cancers. Science 318:1108–13 [Google Scholar]
  145. Woodford-Richens KL, Rowan AJ, Gorman P, Halford S, Bicknell DC. 142.  et al. 2001. SMAD4 mutations in colorectal cancer probably occur before chromosomal instability, but after divergence of the microsatellite instability pathway. Proc. Natl. Acad. Sci. USA 98:9719–23 [Google Scholar]
  146. Wu M, Pastor-Pareja JC, Xu T. 142a.  2010. Interaction between RasV12 and scribbled clones induces tumour growth and invasion. Nature 463:545–48 [Google Scholar]
  147. Wu X, Northcott PA, Dubuc A, Dupuy AJ, Shih DJ. 143.  et al. 2012. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature 482:529–33 [Google Scholar]
  148. Xu X, Hou Y, Yin X, Bao L, Tang A. 144.  et al. 2012. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148:886–95 [Google Scholar]
  149. Yap T, Gerlinger M, Futreal A, Pustzai L, Swanton C. 145.  2012. Intratumour heterogeneity: seeing the wood for the trees. Sci. Transl. Med. 4:127ps10 [Google Scholar]
  150. Yates LR, Campbell PJ. 146.  2012. Evolution of the cancer genome. Nat. Rev. Genet. 13:795–806 [Google Scholar]
  151. Ye CJ, Stevens JB, Liu G, Bremer SW, Jaiswal AS. 147.  et al. 2009. Genome based cell population heterogeneity promotes tumorigenicity: the evolutionary mechanism of cancer. J. Cell. Physiol. 219:288–300 [Google Scholar]
  152. Yip S, Miao J, Cahill DP, Iafrate AJ, Aldape K. 148.  et al. 2009. MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clin. Cancer Res. 15:4622–29 [Google Scholar]
  153. Young J, Leggett B, Gustafson C, Ward M, Searle J. 149.  et al. 1993. Genomic instability occurs in colorectal carcinomas but not in adenomas. Hum. Mutat. 2:351–54 [Google Scholar]
  154. Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G. 150.  et al. 2013. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45:1134–40 [Google Scholar]
/content/journals/10.1146/annurev-genet-120213-092314
Loading
/content/journals/10.1146/annurev-genet-120213-092314
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error