1932

Abstract

Mitochondria lie at the crossroads of neuronal survival and cell death. They play important roles in cellular bioenergetics, control intracellular Ca2+ homeostasis, and participate in key metabolic pathways. Mutations in genes involved in mitochondrial quality control cause a myriad of neurodegenerative diseases. Mitochondria have evolved strategies to kill cells when they are not able to continue their vital functions. This review provides an overview of the role of mitochondria in neurologic disease and the cell death pathways that are mediated through mitochondria, including their role in accidental cell death, the regulated cell death pathways of apoptosis and parthanatos, and programmed cell death. It details the current state of parthanatic cell death and discusses potential therapeutic strategies targeting initiators and effectors of mitochondrial-mediated cell death in neurologic disorders.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010716-105001
2017-01-06
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/57/1/annurev-pharmtox-010716-105001.html?itemId=/content/journals/10.1146/annurev-pharmtox-010716-105001&mimeType=html&fmt=ahah

Literature Cited

  1. 1. McGovern Inst. Brain Res. MIT. 2014. Brain Disorders: By the Numbers Cambridge, MA: MIT https://mcgovern.mit.edu/brain-disorders/by-the-numbers
  2. Di Carlo A. 2.  2009. Human and economic burden of stroke. Age Ageing 38:4–5 [Google Scholar]
  3. Kowal SL, Dall TM, Chakrabarti R, Storm MV, Jain A. 3.  2013. The current and projected economic burden of Parkinson's disease in the United States. Mov. Disord. 28:311–18 [Google Scholar]
  4. Nath S, Villadsen J. 4.  2015. Oxidative phosphorylation revisited. Biotechnol. Bioeng. 112:429–37 [Google Scholar]
  5. Paul VD, Lill R. 5.  2015. Biogenesis of cytosolic and nuclear iron-sulfur proteins and their role in genome stability. Biochim. Biophys. Acta 1853:1528–39 [Google Scholar]
  6. Maio N, Rouault TA. 6.  2015. Iron-sulfur cluster biogenesis in mammalian cells: new insights into the molecular mechanisms of cluster delivery. Biochim. Biophys. Acta 1853:1493–512 [Google Scholar]
  7. Chan DC. 7.  2007. Mitochondrial dynamics in disease. N. Engl. J. Med. 356:1707–9 [Google Scholar]
  8. Schon EA, Przedborski S. 8.  2011. Mitochondria: the next (neurode)generation. Neuron 70:1033–53 [Google Scholar]
  9. Suliman HB, Piantadosi CA. 9.  2016. Mitochondrial quality control as a therapeutic target. Pharmacol. Rev. 68:20–48 [Google Scholar]
  10. Pickrell AM, Youle RJ. 10.  2015. The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85:257–73 [Google Scholar]
  11. Scarffe LA, Stevens DA, Dawson VL, Dawson TM. 11.  2014. Parkin and PINK1: much more than mitophagy. Trends Neurosci 37:315–24 [Google Scholar]
  12. Winklhofer KF. 12.  2014. Parkin and mitochondrial quality control: toward assembling the puzzle. Trends Cell Biol 24:332–41 [Google Scholar]
  13. Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T. 13.  et al. 2011. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12:222–30 [Google Scholar]
  14. Zhou R, Yazdi AS, Menu P, Tschopp J. 14.  2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–25 [Google Scholar]
  15. Burte F, Carelli V, Chinnery PF, Yu-Wai-Man P. 15.  2015. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol. 11:11–24 [Google Scholar]
  16. Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM. 16.  et al. 2015. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22:58–73 [Google Scholar]
  17. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH. 17.  et al. 2012. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–20 [Google Scholar]
  18. Tait SW, Oberst A, Quarato G, Milasta S, Haller M. 18.  et al. 2013. Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep 5:878–85 [Google Scholar]
  19. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M. 19.  et al. 1997. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–89 [Google Scholar]
  20. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. 20.  1996. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–57 [Google Scholar]
  21. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. 21.  1997. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c–dependent activation of caspase-3. Cell 90:405–13 [Google Scholar]
  22. Yin XM, Wang K, Gross A, Zhao Y, Zinkel S. 22.  et al. 1999. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400:886–91 [Google Scholar]
  23. Gillies LA, Kuwana T. 23.  2014. Apoptosis regulation at the mitochondrial outer membrane. J. Cell. Biochem. 115:632–40 [Google Scholar]
  24. Kroemer G, Galluzzi L, Brenner C. 24.  2007. Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87:99–163 [Google Scholar]
  25. Tait SW, Green DR. 25.  2010. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell. Biol. 11:621–32 [Google Scholar]
  26. Orrenius S, Gogvadze V, Zhivotovsky B. 26.  2015. Calcium and mitochondria in the regulation of cell death. Biochem. Biophys. Res. Commun. 460:72–81 [Google Scholar]
  27. Foskett JK, Philipson B. 27.  2015. The mitochondrial Ca2+ uniporter complex. J. Mol. Cell. Cardiol. 78:3–8 [Google Scholar]
  28. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H. 28.  et al. 2005. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–62 [Google Scholar]
  29. Ichas F, Mazat JP. 29.  1998. From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim. Biophys. Acta 1366:33–50 [Google Scholar]
  30. Bernardi P. 30.  1999. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev. 79:1127–55 [Google Scholar]
  31. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K. 31.  et al. 2005. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652–58 [Google Scholar]
  32. Mitchell P. 32.  1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–48 [Google Scholar]
  33. Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park HA. 33.  et al. 2014. An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. PNAS 111:10580–85 [Google Scholar]
  34. Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F. 34.  et al. 2013. Dimers of mitochondrial ATP synthase form the permeability transition pore. PNAS 110:5887–92 [Google Scholar]
  35. Bonora M, Wieckowski MR, Chinopoulos C, Kepp O, Kroemer G. 35.  et al. 2015. Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene 34:1475–86 [Google Scholar]
  36. Chiara F, Castellaro D, Marin O, Petronilli V, Brusilow WS. 36.  et al. 2008. Hexokinase II detachment from mitochondria triggers apoptosis through the permeability transition pore independent of voltage-dependent anion channels. PLOS ONE 3:e1852 [Google Scholar]
  37. Adams HP Jr., del Zoppo G, Alberts MJ, Bhatt DL, Brass L. 37.  et al. 2007. Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups. Stroke 38:1655–711 [Google Scholar]
  38. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF. 38.  et al. 2015. A randomized trial of intraarterial treatment for acute ischemic stroke. N. Engl. J. Med. 372:11–20 [Google Scholar]
  39. Lai TW, Zhang S, Wang YT. 39.  2014. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog. Neurobiol. 115:157–88 [Google Scholar]
  40. Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL. 40.  2013. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur. J. Pharmacol. 698:6–18 [Google Scholar]
  41. Arundine M, Tymianski M. 41.  2004. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell. Mol. Life Sci. 61:657–68 [Google Scholar]
  42. Yu SW, Wang H, Dawson TM, Dawson VL. 42.  2003. Poly(ADP-ribose) polymerase-1 and apoptosis inducing factor in neurotoxicity. Neurobiol. Dis. 14:303–17 [Google Scholar]
  43. Besancon E, Guo S, Lok J, Tymianski M, Lo EH. 43.  2008. Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. Trends Pharmacol. Sci. 29:268–75 [Google Scholar]
  44. MacDonald JF, Jackson MF. 44.  2007. Transient receptor potential channels of the melastatin family and ischemic responses of central neurons. Stroke 38:665–69 [Google Scholar]
  45. Simard JM, Tarasov KV, Gerzanich V. 45.  2007. Non-selective cation channels, transient receptor potential channels and ischemic stroke. Biochim. Biophys. Acta 1772:947–57 [Google Scholar]
  46. Fatokun AA, Dawson VL, Dawson TM. 46.  2014. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br. J. Pharmacol. 171:2000–16 [Google Scholar]
  47. Iadecola C, Anrather J. 47.  2011. The immunology of stroke: from mechanisms to translation. Nat. Med. 17:796–808 [Google Scholar]
  48. Kostic M, Zivkovic N, Stojanovic I. 48.  2013. Multiple sclerosis and glutamate excitotoxicity. Rev. Neurosci. 24:71–88 [Google Scholar]
  49. Meldrum B. 49.  1990. Protection against ischaemic neuronal damage by drugs acting on excitatory neurotransmission. Cerebrovasc. Brain Metab. Rev. 2:27–57 [Google Scholar]
  50. Meldrum BS. 50.  1992. Excitatory amino acid receptors and disease. Curr. Opin. Neurol. Neurosurg. 5:508–13 [Google Scholar]
  51. Sepers MD, Raymond LA. 51.  2014. Mechanisms of synaptic dysfunction and excitotoxicity in Huntington's disease. Drug Discov. Today 19:990–96 [Google Scholar]
  52. Nakanishi S. 52.  1992. Molecular diversity of glutamate receptors and implications for brain function. Science 258:597–603 [Google Scholar]
  53. Aarts M, Liu Y, Liu L, Besshoh S, Arundine M. 53.  et al. 2002. Treatment of ischemic brain damage by perturbing NMDA receptor–PSD-95 protein interactions. Science 298:846–50 [Google Scholar]
  54. Sattler R, Xiong Z, Lu WY, Hafner M, MacDonald JF, Tymianski M. 54.  1999. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284:1845–48 [Google Scholar]
  55. Soriano FX, Martel MA, Papadia S, Vaslin A, Baxter P. 55.  et al. 2008. Specific targeting of pro-death NMDA receptor signals with differing reliance on the NR2B PDZ ligand. J. Neurosci. 28:10696–710 [Google Scholar]
  56. Sun HS, Doucette TA, Liu Y, Fang Y, Teves L. 56.  et al. 2008. Effectiveness of PSD95 inhibitors in permanent and transient focal ischemia in the rat. Stroke 39:2544–53 [Google Scholar]
  57. Cook DJ, Teves L, Tymianski M. 57.  2012. A translational paradigm for the preclinical evaluation of the stroke neuroprotectant Tat-NR2B9c in gyrencephalic nonhuman primates. Sci. Transl. Med. 4:154ra33 [Google Scholar]
  58. Cook DJ, Teves L, Tymianski M. 58.  2012. Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature 483:213–17 [Google Scholar]
  59. Hill MD, Martin RH, Mikulis D, Wong JH, Silver FL. 59.  et al. 2012. Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol 11:942–50 [Google Scholar]
  60. Neuhaus AA, Rabie T, Sutherland BA, Papadakis M, Hadley G. 60.  et al. 2014. Importance of preclinical research in the development of neuroprotective strategies for ischemic stroke. JAMA Neurol 71:634–39 [Google Scholar]
  61. Tymianski M. 61.  2014. Stroke in 2013: disappointments and advances in acute stroke intervention. Nat. Rev. Neurol. 10:66–68 [Google Scholar]
  62. Tymianski M. 62.  2015. Neuroprotective therapies: preclinical reproducibility is only part of the problem. Sci. Transl. Med. 7:299fs32 [Google Scholar]
  63. O'Bryant Z, Vann KT, Xiong ZG. 63.  2014. Translational strategies for neuroprotection in ischemic stroke—focusing on acid-sensing ion channel 1a. Transl. Stroke Res. 5:59–68 [Google Scholar]
  64. Moran MM, McAlexander MA, Biro T, Szallasi A. 64.  2011. Transient receptor potential channels as therapeutic targets. Nat. Rev. Drug Discov. 10:601–20 [Google Scholar]
  65. Dawson VL, Dawson TM. 65.  1998. Nitric oxide in neurodegeneration. Prog. Brain Res. 118:215–29 [Google Scholar]
  66. Dawson VL, Dawson TM, Bartley DA, Uhl GR, Snyder SH. 66.  1993. Mechanisms of nitric oxide–mediated neurotoxicity in primary brain cultures. J. Neurosci. 13:2651–61 [Google Scholar]
  67. Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH. 67.  1991. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. PNAS 88:6368–71 [Google Scholar]
  68. Choi DW, Rothman SM. 68.  1990. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu. Rev. Neurosci. 13:171–82 [Google Scholar]
  69. Stanika RI, Pivovarova NB, Brantner CA, Watts CA, Winters CA, Andrews SB. 69.  2009. Coupling diverse routes of calcium entry to mitochondrial dysfunction and glutamate excitotoxicity. PNAS 106:9854–59 [Google Scholar]
  70. Cazevieille C, Muller A, Meynier F, Bonne C. 70.  1993. Superoxide and nitric oxide cooperation in hypoxia/reoxygenation-induced neuron injury. Free Radic. Biol. Med. 14:389–95 [Google Scholar]
  71. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA. 71.  1994. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265:1883–85 [Google Scholar]
  72. Kollegger H, McBean GJ, Tipton KF. 72.  1993. Reduction of striatal N-methyl-d-aspartate toxicity by inhibition of nitric oxide synthase. Biochem. Pharmacol. 45:260–64 [Google Scholar]
  73. Lustig HS, von Brauchitsch KL, Chan J, Greenberg DA. 73.  1992. Cyclic GMP modulators and excitotoxic injury in cerebral cortical cultures. Brain Res 577:343–46 [Google Scholar]
  74. Moncada C, Lekieffre D, Arvin B, Meldrum B. 74.  1992. Effect of NO synthase inhibition on NMDA- and ischaemia-induced hippocampal lesions. NeuroReport 3:530–32 [Google Scholar]
  75. Beckman JS, Koppenol WH. 75.  1996. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol. 271:C1424–37 [Google Scholar]
  76. Xia Y, Dawson VL, Dawson TM, Snyder SH, Zweier JL. 76.  1996. Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. PNAS 93:6770–74 [Google Scholar]
  77. de Murcia G, Ménissier de Murcia J. 77.  1994. Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem. Sci. 19:172–76 [Google Scholar]
  78. de Murcia G, Schreiber V, Molinete M, Saulier B, Poch O. 78.  et al. 1994. Structure and function of poly(ADP-ribose) polymerase. Mol. Cell. Biochem. 138:15–24 [Google Scholar]
  79. Szabo C, Dawson VL. 79.  1998. Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol. Sci. 19:287–98 [Google Scholar]
  80. Andrabi SA, Dawson TM, Dawson VL. 80.  2008. Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann. N. Y. Acad. Sci. 1147:233–41 [Google Scholar]
  81. Andrabi SA, Kim NS, Yu SW, Wang H, Koh DW. 81.  et al. 2006. Poly(ADP-ribose) (PAR) polymer is a death signal. PNAS 103:18308–13 [Google Scholar]
  82. Koh DW, Dawson TM, Dawson VL. 82.  2005. Poly(ADP-ribosyl)ation regulation of life and death in the nervous system. Cell. Mol. Life Sci. 62:760–68 [Google Scholar]
  83. Virag L, Szabo C. 83.  2002. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol. Rev. 54:375–429 [Google Scholar]
  84. Wang Y, Dawson VL, Dawson TM. 84.  2009. Poly(ADP-ribose) signals to mitochondrial AIF: a key event in parthanatos. Exp. Neurol. 218:193–202 [Google Scholar]
  85. Wang Y, Kim NS, Haince JF, Kang HC, David KK. 85.  et al. 2011. Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci. Signal. 4:ra20 [Google Scholar]
  86. Wang Y, Kim NS, Li X, Greer PA, Koehler RC. 86.  et al. 2009. Calpain activation is not required for AIF translocation in PARP-1-dependent cell death (parthanatos). J. Neurochem. 110:687–96 [Google Scholar]
  87. Yu SW, Andrabi SA, Wang H, Kim NS, Poirier GG. 87.  et al. 2006. Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. PNAS 103:18314–19 [Google Scholar]
  88. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ. 88.  et al. 2002. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259–63 [Google Scholar]
  89. Nicholls DG. 89.  2004. Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures. Curr. Mol. Med. 4:149–77 [Google Scholar]
  90. Inohara N, Nunez G. 90.  2003. NODs: intracellular proteins involved in inflammation and apoptosis. Nat. Rev. Immunol. 3:371–82 [Google Scholar]
  91. Friedlander RM. 91.  2003. Apoptosis and caspases in neurodegenerative diseases. N. Engl. J. Med. 348:1365–75 [Google Scholar]
  92. Martin LJ. 92.  2010. Mitochondrial and cell death mechanisms in neurodegenerative diseases. Pharmaceuticals 3:839–915 [Google Scholar]
  93. Mattson MP. 93.  2000. Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell. Biol. 1:120–29 [Google Scholar]
  94. Hemann MT, Lowe SW. 94.  2006. The p53–Bcl-2 connection. Cell Death Differ 13:1256–59 [Google Scholar]
  95. Lipton P. 95.  1999. Ischemic cell death in brain neurons. Physiol. Rev. 79:1431–568 [Google Scholar]
  96. Li X, Klaus JA, Zhang J, Xu Z, Kibler KK. 96.  et al. 2010. Contributions of poly(ADP-ribose) polymerase-1 and -2 to nuclear translocation of apoptosis-inducing factor and injury from focal cerebral ischemia. J. Neurochem. 113:1012–22 [Google Scholar]
  97. Dantzer F, Amé JC, Schreiber V, Nakamura J, Ménissier-de Murcia J, de Murcia G. 97.  2006. Poly(ADP-ribose) polymerase-1 activation during DNA damage and repair. Methods Enzymol 409:493–510 [Google Scholar]
  98. Krietsch J, Rouleau M, Pic E, Ethier C, Dawson TM. 98.  et al. 2013. Reprogramming cellular events by poly(ADP-ribose)-binding proteins. Mol. Aspects Med. 34:1066–87 [Google Scholar]
  99. Duan Y, Gross RA, Sheu SS. 99.  2007. Ca2+-dependent generation of mitochondrial reactive oxygen species serves as a signal for poly(ADP-ribose) polymerase-1 activation during glutamate excitotoxicity. J. Physiol. 585:741–58 [Google Scholar]
  100. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE. 100.  et al. 1999. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–46 [Google Scholar]
  101. Wang W, Fang H, Groom L, Cheng A, Zhang W. 101.  et al. 2008. Superoxide flashes in single mitochondria. Cell 134:279–90 [Google Scholar]
  102. Wang H, Yu SW, Koh DW, Lew J, Coombs C. 102.  et al. 2004. Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death. J. Neurosci. 24:10963–73 [Google Scholar]
  103. Lee Y, Karuppagounder SS, Shin JH, Lee YI, Ko HS. 103.  et al. 2013. Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss. Nat. Neurosci. 16:1392–400 [Google Scholar]
  104. Nakajima H, Kubo T, Ihara H, Hikida T, Danjo T. 104.  et al. 2015. Nuclear-translocated glyceraldehyde-3-phosphate dehydrogenase promotes poly(ADP-ribose) polymerase-1 activation during oxidative/nitrosative stress in stroke. J. Biol. Chem. 290:14493–503 [Google Scholar]
  105. Eliasson MJ, Sampei K, Mandir AS, Hurn PD, Traystman RJ. 105.  et al. 1997. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat. Med. 3:1089–95 [Google Scholar]
  106. Moroni F. 106.  2008. Poly(ADP-ribose)polymerase 1 (PARP-1) and postischemic brain damage. Curr. Opin. Pharmacol. 8:96–103 [Google Scholar]
  107. Pacher P, Szabo C. 107.  2008. Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease. Am. J. Pathol. 173:2–13 [Google Scholar]
  108. Martire S, Mosca L, d'Erme M. 108.  2015. PARP-1 involvement in neurodegeneration: a focus on Alzheimer's and Parkinson's diseases. Mech. Ageing Dev. 146–148:53–64 [Google Scholar]
  109. Wang Y, An R, Umanah GK, Park H, Nambiar K. 109.  et al. 2016. A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) (PAR) polymerase-1. Science press. https://doi.org/10.1126/science.aad6872
  110. Laganeckas M, Margelevičius M, Venclovas C. 110.  2011. Identification of new homologs of PD-(D/E)XK nucleases by support vector machines trained on data derived from profile–profile alignments. Nucleic Acids Res 39:1187–96 [Google Scholar]
  111. Steczkiewicz K, Muszewska A, Knizewski L, Rychlewski L, Ginalski K. 111.  2012. Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily. Nucleic Acids Res 40:7016–45 [Google Scholar]
  112. Yu SW, Wang Y, Frydenlund DS, Ottersen OP, Dawson VL, Dawson TM. 112.  2009. Outer mitochondrial membrane localization of apoptosis-inducing factor: mechanistic implications for release. ASN Neuro 1:AN20090046 [Google Scholar]
  113. Moubarak RS, Yuste VJ, Artus C, Bouharrour A, Greer PA. 113.  et al. 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell. Biol. 27:4844–62 [Google Scholar]
  114. Konishi A, Shimizu S, Hirota J, Takao T, Fan Y. 114.  et al. 2003. Involvement of histone H1.2 in apoptosis induced by DNA double-strand breaks. Cell 114:673–88 [Google Scholar]
  115. Mashimo M, Kato J, Moss J. 115.  2013. ADP-ribosyl-acceptor hydrolase 3 regulates poly (ADP-ribose) degradation and cell death during oxidative stress. PNAS 110:18964–69 [Google Scholar]
  116. Feng X, Koh DW. 116.  2013. Roles of poly(ADP-ribose) glycohydrolase in DNA damage and apoptosis. Int. Rev. Cell Mol. Biol. 304:227–81 [Google Scholar]
  117. Koh DW, Lawler AM, Poitras MF, Sasaki M, Wattler S. 117.  et al. 2004. Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. PNAS 101:17699–704 [Google Scholar]
  118. Hanai S, Kanai M, Ohashi S, Okamoto K, Yamada M. 118.  et al. 2004. Loss of poly(ADP-ribose) glycohydrolase causes progressive neurodegeneration in Drosophila melanogaster. . PNAS 101:82–86 [Google Scholar]
  119. Feng X, Zhou Y, Proctor AM, Hopkins MM, Liu M, Koh DW. 119.  2012. Silencing of Apoptosis-Inducing factor and poly(ADP-ribose) glycohydrolase reveals novel roles in breast cancer cell death after chemotherapy. Mol. Cancer 11:48 [Google Scholar]
  120. Sharifi R, Morra R, Appel CD, Tallis M, Chioza B. 120.  et al. 2013. Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO J 32:1225–37 [Google Scholar]
  121. Andrabi SA, Kang HC, Haince JF, Lee YI, Zhang J. 121.  et al. 2011. Iduna protects the brain from glutamate excitotoxicity and stroke by interfering with poly(ADP-ribose) polymer-induced cell death. Nat. Med. 17:692–99 [Google Scholar]
  122. Callow MG, Tran H, Phu L, Lau T, Lee J. 122.  et al. 2011. Ubiquitin ligase RNF146 regulates tankyrase and Axin to promote Wnt signaling. PLOS ONE 6:e22595 [Google Scholar]
  123. Kang HC, Lee YI, Shin JH, Andrabi SA, Chi Z. 123.  et al. 2011. Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. PNAS 108:14103–8 [Google Scholar]
  124. Zhang Y, Liu S, Mickanin C, Feng Y, Charlat O. 124.  et al. 2011. RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat. Cell Biol. 13:623–29 [Google Scholar]
  125. DaRosa PA, Wang Z, Jiang X, Pruneda JN, Cong F. 125.  et al. 2015. Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal. Nature 517:223–26 [Google Scholar]
  126. Alano CC, Garnier P, Ying W, Higashi Y, Kauppinen TM, Swanson RA. 126.  2010. NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J. Neurosci. 30:2967–78 [Google Scholar]
  127. Ha HC, Snyder SH. 127.  1999. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. PNAS 96:13978–82 [Google Scholar]
  128. Andrabi SA, Umanah GK, Chang C, Stevens DA, Karuppagounder SS. 128.  et al. 2014. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis. PNAS 111:10209–14 [Google Scholar]
  129. Fouquerel E, Goellner EM, Yu Z, Gagné JP, Barbi de Moura M. 129.  et al. 2014. ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion. Cell Rep 8:1819–31 [Google Scholar]
  130. Xu JC, Fan J, Wang X, Eacker SM, Kam TI. 130.  et al. 2016. Cultured networks of excitatory projection neurons and inhibitory interneurons for studying human cortical neurotoxicity. Sci. Transl. Med. 8:333ra48 [Google Scholar]
  131. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. 131.  2009. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27:275–80 [Google Scholar]
  132. Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S. 132.  et al. 2008. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3:519–32 [Google Scholar]
  133. Gaspard N, Bouschet T, Hourez R, Dimidschstein J, Naeije G. 133.  et al. 2008. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455:351–57 [Google Scholar]
  134. Doudna JA, Charpentier E. 134.  2014. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096 [Google Scholar]
  135. Whitaker RM, Corum D, Beeson CC, Schnellmann RG. 135.  2016. Mitochondrial biogenesis as a pharmacological target: a new approach to acute and chronic diseases. Annu. Rev. Pharmacol. Toxicol. 56:229–49 [Google Scholar]
  136. Fischer U, Schulze-Osthoff K. 136.  2005. New approaches and therapeutics targeting apoptosis in disease. Pharmacol. Rev. 57:187–215 [Google Scholar]
  137. Deeks ED. 137.  2015. Olaparib: first global approval. Drugs 75:231–40 [Google Scholar]
  138. Ricks TK, Chiu HJ, Ison G, Kim G, McKee AE. 138.  et al. 2015. Successes and challenges of PARP inhibitors in cancer therapy. Front. Oncol. 5:222 [Google Scholar]
  139. Vinayak S, Ford JM. 139.  2010. PARP inhibitors for the treatment and prevention of breast cancer. Curr. Breast Cancer Rep. 2:190–97 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010716-105001
Loading
/content/journals/10.1146/annurev-pharmtox-010716-105001
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error