Thromb Haemost 2012; 108(06): 1089-1096
DOI: 10.1160/TH12-06-0396
Review Article
Schattauer GmbH

The Angiotensin-Converting Enzyme 2/Angiotensin-(1–7)/Mas receptor axis: A potential target for treating thrombotic diseases

Rodrigo A. Fraga-Silva
1   Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
,
Danielle G. Da Silva
1   Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
,
Fabrizio Montecucco
2   Division of Cardiology, Geneva University Hospitals, Faculty of Medicine, Foundation for Medical Researches, Geneva, Switzerland
3   First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
,
François Mach
2   Division of Cardiology, Geneva University Hospitals, Faculty of Medicine, Foundation for Medical Researches, Geneva, Switzerland
,
Nikolaos Stergiopulos
1   Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
,
Rafaela F. da Silva
1   Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
4   National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Biological Science Institute, Federal University of Minas Gerais, Brazil
,
Robson A. S. Santos
4   National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Biological Science Institute, Federal University of Minas Gerais, Brazil
› Author Affiliations
Financial support:This research was funded by the Brazilian Swiss Joint Research Program (BSJRP) to F. Mach, N. Stergiopulos, and R.A.S Santos. This research was funded by EU FP7, Grant number 201668, AtheroRemo to F. Mach. This work was also supported by the Swiss National Science Foundation Grants to F. Mach (#310030–118245) and F. Montecucco (#32003B-134963/1).
Further Information

Publication History

Received: 13 June 2012

Accepted after major revision:21 August 2012

Publication Date:
30 November 2017 (online)

Summary

Despite many therapeutic advances leading to increasingly effective drug treatments, thrombotic events (such as ischaemic stroke, pulmonary embolism, deep venous thrombosis and acute myocardial infarction) still represent a major worldwide cause of morbidity and mortality. Remarkable effort has been made to identify new drug targets. There is growing evidence indicating that the recently described counter-regulator axis of the renin-angiotensin system (RAS), composed of Angiotensin-Converting Enzyme 2 (ACE2), Angiotensin-(1–7) and the Mas receptor, has protective effects against thrombosis. In addition, it could be considered as a promising target for treating or preventing this disease. In this narrative review, we focused on the recent findings of the role of the ACE2/Angiotensin-(1–7)/Mas axis on the haemostatic process and its therapeutic potential.

 
  • References

  • 1 Willoughby S, Holmes A, Loscalzo J. Platelets and cardiovascular disease. Eur J Cardiovasc Nurs 2002; 1: 273-288.
  • 2 Vazzana N, Ranalli P, Cuccurullo C. et al. Diabetes mellitus and thrombosis. Thromb Res 2012; 129: 371-377.
  • 3 Lip GY. Hypertension, platelets, and the endothelium: the „thrombotic paradox“of hypertension (or „Birmingham paradox“) revisited. Hypertension 2003; 41: 199-200.
  • 4 Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 2006; 3: e442.
  • 5 Loscalzo J. Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ Res 2001; 88: 756-762.
  • 6 Bombeli T, Mueller M, Haeberli A. Anticoagulant properties of the vascular endothelium. Thromb Haemost 1997; 77: 408-423.
  • 7 Crawley JT, Zanardelli S, Chion CK. et al. The central role of thrombin in hemostasis. J Thromb Haemost 2007; 5 (Suppl. 01) 95-101.
  • 8 Griendling KK, Murphy TJ, Alexander RW. Molecular biology of the renin-angiotensin system. Circulation 1993; 87: 1816-1828.
  • 9 Kucharewicz I, Pawlak R, Matys T. et al. Angiotensin-(1–7): an active member of the renin-angiotensin system. J Physiol Pharmacol 2002; 53: 533-540.
  • 10 Dzau VJ. Theodore Cooper Lecture: Tissue angiotensin and pathobiology of vascular disease: a unifying hypothesis. Hypertension 2001; 37: 1047-1052.
  • 11 Remkova A, Remko M. The role of renin-angiotensin system in prothrombotic state in essential hypertension. Physiol Res 2010; 59: 13-23.
  • 12 de Gasparo M, Catt KJ, Inagami T. et al. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 2000; 52: 415-472.
  • 13 Vickers C, Hales P, Kaushik V. et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 2002; 277: 14838-14843.
  • 14 Tipnis SR, Hooper NM, Hyde R. et al. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 2000; 275: 33238-33243.
  • 15 Donoghue M, Hsieh F, Baronas E. et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 2000; 87: E1-9.
  • 16 Santos RA, Simoes e Silva AC. et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 2003; 100: 8258-8263.
  • 17 Ferreira AJ, Santos RA, Bradford CN. et al. Therapeutic implications of the vasoprotective axis of the renin-angiotensin system in cardiovascular diseases. Hypertension 2010; 55: 207-213.
  • 18 Zisman LS, Meixell GE, Bristow MR. et al. Angiotensin-(1-7) formation in the intact human heart: in vivo dependence on angiotensin II as substrate. Circulation 2003; 108: 1679-1681.
  • 19 Sampaio WO, Henrique de Castro C, Santos RA. et al. Angiotensin-(1-7) counterregulates angiotensin II signaling in human endothelial cells. Hypertension 2007; 50: 1093-1098.
  • 20 Ferrario CM, Chappell MC, Tallant EA. et al. Counterregulatory actions of angiotensin-(1–7). Hypertension 1997; 30: 535-541.
  • 21 Ferreira AJ Santos RA. Cardiovascular actions of angiotensin-(1–7). Braz J Med Biol Res 2005; 38: 499-507.
  • 22 Fraga-Silva RA, Pinheiro SV, Gonçalves AC. et al. The antithrombotic effect of angiotensin-(1–7) involves mas-mediated NO release from platelets. Mol Med 2008; 14: 28-35.
  • 23 Fraga-Silva RA, Sorg BS, Wankhede M. et al. ACE2 activation promotes antithrombotic activity. Mol Med 2010; 16: 210-215.
  • 24 Kucharewicz I, Pawlak R, Matys T. et al. Antithrombotic effect of captopril and losartan is mediated by angiotensin-(1-7). Hypertension 2002; 40: 774-779.
  • 25 Unger T. The role of the renin-angiotensin system in the development of cardiovascular disease. Am J Cardiol 2002; 89: 3A-10A.
  • 26 Bader M. Tissue renin-angiotensin-aldosterone systems: Targets for pharmacological therapy. Annu Rev Pharmacol Toxicol 2010; 50: 439-465.
  • 27 Montecucco F, Pende A, Mach F. The renin-angiotensin system modulates inflammatory processes in atherosclerosis: evidence from basic research and clinical studies. Mediators Inflamm 2009; 2009: 752406.
  • 28 Kokubu T, Ueda E, Joh T. et al. Purification and properties of angiotensin I-converting enzyme in human lung and its role on the metabolism of vasoactive peptides in pulmonary circulation. Adv Exp Med Biol 1979; 120B: 467-475.
  • 29 Inagami T. A memorial to Robert Tiegerstedt: the centennial of renin discovery. Hypertension 1998; 32: 953-957.
  • 30 Touyz RM, Berry C. Recent advances in angiotensin II signaling. Braz J Med Biol Res 2002; 35: 1001-1015.
  • 31 Allen AM, Zhuo J, Mendelsohn FA. Localization and function of angiotensin AT1 receptors. Am J Hypertens 2000; 13: 31S-38S.
  • 32 Matsusaka T, Ichikawa I. Biological functions of angiotensin and its receptors. Annu Rev Physiol 1997; 59: 395-412.
  • 33 Touyz RM. Reactive oxygen species and angiotensin II signaling in vascular cells -- implications in cardiovascular disease. Braz J Med Biol Res 2004; 37: 1263-1273.
  • 34 Brown NJ, Vaughan DE. Prothrombotic effects of angiotensin. Adv Intern Med 2000; 45: 419-429.
  • 35 Widdop RE, Matrougui K, Levy BI. et al. AT2 receptor-mediated relaxation is preserved after long-term AT1 receptor blockade. Hypertension 2002; 40: 516-520.
  • 36 Savoia C, D’Agostino M, Lauri F. et al. Angiotensin type 2 receptor in hypertensive cardiovascular disease. Curr Opin Nephrol Hypertens 2011; 20: 125-132.
  • 37 Schiffrin EL. Vascular and cardiac benefits of angiotensin receptor blockers. Am J Med 2002; 113: 409-418.
  • 38 Ma TK, Kam KK, Yan BP. et al. Renin-angiotensin-aldosterone system blockade for cardiovascular diseases: current status. Br J Pharmacol 2010; 160: 1273-1292.
  • 39 Nicholls MG, Richards AM, Agarwal M. The importance of the renin-angiotensin system in cardiovascular disease. J Hum Hypertens 1998; 12: 295-299.
  • 40 Santos RA, Ferreira AJ, Pinheiro SV. et al. Angiotensin-(1–7) and its receptor as a potential targets for new cardiovascular drugs. Expert Opin Investig Drugs 2005; 14: 1019-1031.
  • 41 Xu P, Costa-Goncalves AC, Todiras M. et al. Endothelial dysfunction and elevated blood pressure in MAS gene-deleted mice. Hypertension 2008; 51: 574-580.
  • 42 Rabelo LA, Alenina N, Bader M. ACE2-angiotensin-(1–7)-Mas axis and oxidative stress in cardiovascular disease. Hypertens Res 2011; 34: 154-160.
  • 43 Iwai M, Horiuchi M. Devil and angel in the renin-angiotensin system: ACE-angiotensin II-AT1 receptor axis vs. ACE2-angiotensin-(1–7)-Mas receptor axis. Hypertens Res 2009; 32: 533-536.
  • 44 Santos RA, Campagnole-Santos MJ, Andrade SP. Angiotensin-(1–7): an update. Regul Pept 2000; 91: 45-62.
  • 45 Dielis AW, Smid M, Spronk HM. et al. The prothrombotic paradox of hypertension: role of the renin-angiotensin and kallikrein-kinin systems. Hypertension 2005; 46: 1236-1242.
  • 46 Dielis AW, Smid M, Spronk HM. et al. Changes in fibrinolytic activity after angiotensin II receptor blockade in therapy-resistant hypertensive patients. Journal of thrombosis and haemostasis : J Thromb Haemost 2007; 5: 1509-1515.
  • 47 Matsumoto T, Minai K, Horie H. et al. Angiotensin-converting enzyme inhibition but not angiotensin II type 1 receptor antagonism augments coronary release of tissue plasminogen activator in hypertensive patients. J Am Coll Cardiol 2003; 41: 1373-1379.
  • 48 Brown NJ, Agirbasli MA, Williams GH. et al. Effect of activation and inhibition of the renin-angiotensin system on plasma PAI-1. Hypertension 1998; 32: 965-971.
  • 49 Minai K, Matsumoto T, Horie H. et al. Bradykinin stimulates the release of tissue plasminogen activator in human coronary circulation: effects of angiotensin-converting enzyme inhibitors. J Am Coll Cardiol 2001; 37: 1565-1570.
  • 50 Goodfield NE, Newby DE, Ludlam CA. et al. Effects of acute angiotensin II type 1 receptor antagonism and angiotensin converting enzyme inhibition on plasma fibrinolytic parameters in patients with heart failure. Circulation 1999; 99: 2983-2985.
  • 51 Erdem Y, Usalan C, Haznedaroğlu IC. et al. Effects of angiotensin converting enzyme and angiotensin II receptor inhibition on impaired fibrinolysis in systemic hypertension. Am J Hypertens 1999; 12: 1071-1076.
  • 52 Sakata K, Pawlak R, Urano T. et al. Effects of a long-term pharmacological interruption of the renin-angiotensin system on the fibrinolytic system in essential hypertension. Pathophysiol Haemost Thromb 2002; 32: 67-75.
  • 53 Koh KK, Chung WJ, Ahn JY. et al. Angiotensin II type 1 receptor blockers reduce tissue factor activity and plasminogen activator inhibitor type-1 antigen in hypertensive patients: a randomized, double-blind, placebo-controlled study. Atherosclerosis 2004; 177: 155-160.
  • 54 Makris TK, Stavroulakis GA, Krespi PG. et al. Fibrinolytic/hemostatic variables in arterial hypertension: response to treatment with irbesartan or atenolol. Am J Hypertens 2000; 13: 783-788.
  • 55 Seljeflot I, Moan A, Kjeldsen S. et al. Effect of angiotensin II receptor blockade on fibrinolysis during acute hyperinsulinemia in patients with essential hypertension. Hypertension 1996; 27: 1299-1304.
  • 56 Remkova A, Kratochvil’ova H, Durina J. Impact of the therapy by renin-angiotensin system targeting antihypertensive agents perindopril versus telmisartan on prothrombotic state in essential hypertension. J Hum Hypertens 2008; 22: 338-345.
  • 57 Hlubocká Z, Umnerová V, Heller S. et al. Circulating intercellular cell adhesion molecule-1, endothelin-1 and von Willebrand factor-markers of endothelial dysfunction in uncomplicated essential hypertension: the effect of treatment with ACE inhibitors. J Hum Hypertens 2002; 16: 557-562.
  • 58 Hornig B, Arakawa N, Haussmann D. et al. Differential effects of quinaprilat and enalaprilat on endothelial function of conduit arteries in patients with chronic heart failure. Circulation 1998; 98: 2842-2848.
  • 59 Mancini GB, Henry GC, Macaya C. et al. Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The TREND (Trial on Reversing ENdothelial Dysfunction) Study Circulation 1996; 94: 258-265.
  • 60 Taddei S, Virdis A, Ghiadoni L. et al. Effects of antihypertensive drugs on endothelial dysfunction: clinical implications. Drugs 2002; 62: 265-284.
  • 61 Ceconi C, Fox KM, Remme WJ. et al. ACE inhibition with perindopril and endothelial function. Results of a substudy of the EUROPA study: PERTINENT. Cardiovasc Res 2007; 73: 237-246.
  • 62 Scientific Committee of the PERTINENT Sub-Study, EUROPA-PERTINENT Investigators. PERTINENT--perindopril-thrombosis, inflammation, endothelial dysfunction and neurohormonal activation trial: a sub-study of the EUROPA study. Cardiovasc Drugs Ther 2003; 17: 83-91.
  • 63 Riondino S, Pignatelli P, Pulcinelli FM. et al. Platelet hyperactivity in hypertensive older patients is controlled by lowering blood pressure. J Am Geriatr Soc 1999; 47: 943-947.
  • 64 Okrucka A, Pechan J, Kratochvilova H. Effects of the angiotensin-converting enzyme (ACE) inhibitor perindopril on endothelial and platelet functions in essential hypertension. Platelets 1998; 9: 63-67.
  • 65 Levy PJ, Yunis C, Owen J. et al. Inhibition of platelet aggregability by losartan in essential hypertension. Am J Cardiol 2000; 86: 1188-1192.
  • 66 Kalinowski L, Matys T, Chabielska E. et al. Angiotensin II AT1 receptor antagonists inhibit platelet adhesion and aggregation by nitric oxide release. Hypertension 2002; 40: 521-527.
  • 67 Sato Y, Fujii S, Imagawa S. et al. Platelet aggregability in patients with hypertension treated with angiotensin II type 1 receptor blockers. J Atheroscler Thromb 2007; 14: 31-35.
  • 68 Iyer SN, Chappell MC, Averill DB. et al. Vasodepressor actions of angiotensin-(1-7) unmasked during combined treatment with lisinopril and losartan. Hypertension 1998; 31: 699-705.
  • 69 Iyer SN, Ferrario CM, Chappell MC. Angiotensin-(1–7) contributes to the antihypertensive effects of blockade of the renin-angiotensin system. Hypertension 1998; 31: 356-361.
  • 70 Kucharewicz I, Chabielska E, Pawlak D. et al. The antithrombotic effect of angiotensin-(–7) closely resembles that of losartan. J Renin Angiotensin Aldosterone Syst 2000; 1: 268-272.
  • 71 Silva DM, Gomes-Filho A, Olivon VC. et al. Swimming training improves the vasodilator effect of angiotensin-(1–7) in the aorta of spontaneously hypertensive rat. J Appl Physiol 2011; 111: 1272-1277.
  • 72 Sampaio WO, Souza dos Santos RA, Faria-Silva R. et al. Angiotensin-(1–7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension 2007; 49: 185-192.
  • 73 Rajendran S, Chirkov YY, Campbell DJ. et al. Angiotensin-(1–7) enhances anti-aggregatory effects of the nitric oxide donor sodium nitroprusside. J Cardiovasc Pharmacol 2005; 46: 459-463.
  • 74 Fraga-Silva RA, Costa-Fraga FP, De Sousa FB. et al. An orally active formulation of angiotensin-(1–7) produces an antithrombotic effect. Clinics (Sao Paulo) 2011; 66: 837-841.
  • 75 Senchenkova EY, Russell J, Almeida-Paula LD. et al. Angiotensin II-mediated microvascular thrombosis. Hypertension 2010; 56: 1089-1095.
  • 76 Senchenkova EY, Russell J, Kurmaeva E. et al. Role of T lymphocytes in angiotensin II-mediated microvascular thrombosis. Hypertension 2011; 58: 959-965.
  • 77 Zhang JD, Patel MB, Song YS. et al. A novel role for type 1 Angiotensin receptors on T lymphocytes to limit target organ damage in hypertension. Circ Res 2012; 110: 1604-1617.
  • 78 Ferreira AJ, Bader M, Santos RA. Therapeutic targeting of the angiotensin-converting enzyme 2/Angiotensin-(1–7)/Mas cascade in the renin-angiotensin system: a patent review. Expert Opin Ther Pat 2012; 22: 567-574.
  • 79 Ferreira AJ, Murça TM, Fraga-Silva RA. et al. New cardiovascular and pulmonary therapeutic strategies based on the Angiotensin-converting enzyme 2/angiotensin-(1–7)/mas receptor axis. Int J Hypertens. 2012: 147825
  • 80 Yamada K, Iyer SN, Chappell MC. et al. Converting enzyme determines plasma clearance of angiotensin-(1–7). Hypertension 1998; 32: 496-502.
  • 81 Lula I, Denadai AL, Resende JM. et al. Study of angiotensin-(1–7) vasoactive peptide and its beta-cyclodextrin inclusion complexes: complete sequence-specific NMR assignments and structural studies. Peptides 2007; 28: 2199-2210.
  • 82 Uekama K. Design and evaluation of cyclodextrin-based drug formulation. Chem Pharm Bull (Tokyo) 2004; 52: 900-915.
  • 83 Salústio PJ, Pontes P, Conduto C. et al. Advanced technologies for oral controlled release: cyclodextrins for oral controlled release. AAPS PharmSciTech 2011; 12: 1276-92.
  • 84 Rajewski RA, Stella VJ. Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. J Pharm Sci 1996; 85: 1142-1169.
  • 85 Roux M, Perly B, Djedaini-Pilard F. Self-assemblies of amphiphilic cyclodextrins. Eur Biophys J 2007; 36: 861-867.
  • 86 Silva-Barcellos NM, Frézard F, Caligiorne S. et al. Long-lasting cardiovascular effects of liposome-entrapped angiotensin-(1–7) at the rostral ventrolateral medulla. Hypertension 2001; 38: 1266-1271.
  • 87 Silva-Barcellos NM, Caligiorne S, dos Santos RA. et al. Site-specific microinjection of liposomes into the brain for local infusion of a short-lived peptide. J Control Release 2004; 95: 301-307.
  • 88 Kluskens LD, Nelemans SA, Rink R. et al. Angiotensin-(1–7) with thioether bridge: an angiotensin-converting enzyme-resistant, potent angiotensin-(1–7) analog. J Pharmacol Exp Ther 2009; 328: 849-854.
  • 89 Wiemer G, Dobrucki LW, Louka FR. et al. AVE 0991, a nonpeptide mimic of the effects of angiotensin-(1–7) on the endothelium. Hypertension 2002; 40: 847-852.
  • 90 Savergnini SQ, Beiman M, Lautner RQ. et al. Vascular relaxation, antihypertensive effect, and cardioprotection of a novel peptide agonist of the MAS receptor. Hypertension 2010; 56: 112-120.
  • 91 Pinheiro SV, Simões e Silva AC, Sampaio WO. et al. Nonpeptide AVE 0991 is an angiotensin-(1–7) receptor Mas agonist in the mouse kidney. Hypertension 2004; 44: 490-496.
  • 92 Lemos VS, Silva DM, Walther T. et al. The endothelium-dependent vasodilator effect of the nonpeptide Ang(1–7) mimic AVE 0991 is abolished in the aorta of mas-knockout mice. J Cardiovasc Pharmacol 2005; 46: 274-279.
  • 93 Hernández Prada JA, Ferreira AJ, Katovich MJ. et al. Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents. Hypertension 2008; 51: 1312-1317.