Thromb Haemost 2014; 112(05): 1002-1013
DOI: 10.1160/th13-08-0711
Endothelium and Vascular Development
Schattauer GmbH

Cooperation between human fibrocytes and endothelial colony-forming cells increases angiogenesis via the CXCR4 pathway

David M. Smadja
1   Vascular Biology Program and Surgery Department, Children`s Hospital, Harvard Medical School, Boston, Massachusetts, USA
2   Université Paris Descartes, Sorbonne Paris Cite, Paris, France
3   AP-HP, Hôpital Européen Georges Pompidou, Service d`Hématologie Biologique, Paris, France
4   Inserm UMR-S1140, Paris, France
,
Peter Dorfmüller
5   Univ. Paris-Sud, Faculté de Médecine, Le Kremlin-Bicêtre, France
6   Inserm UMR-S999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
,
Coralie L. Guerin
2   Université Paris Descartes, Sorbonne Paris Cite, Paris, France
4   Inserm UMR-S1140, Paris, France
7   PARCC, Inserm UMR-S970, Paris, France
,
Ivan Bieche
2   Université Paris Descartes, Sorbonne Paris Cite, Paris, France
8   Inserm UMR-S745, Paris, France
,
Cécile Badoual
2   Université Paris Descartes, Sorbonne Paris Cite, Paris, France
7   PARCC, Inserm UMR-S970, Paris, France
9   AP-HP, Hôpital Européen Georges Pompidou, Service d`anatomopathologie, Paris, France
,
Elisa Boscolo
14   Experimental Hematology and Cancer Biology , Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
,
Marianne Kambouchner
10   AP-HP, Hôpital Avicenne, Service d`anatomopathologie, Bobigny, France
,
Aurélie Cazes
2   Université Paris Descartes, Sorbonne Paris Cite, Paris, France
9   AP-HP, Hôpital Européen Georges Pompidou, Service d`anatomopathologie, Paris, France
,
Olaf Mercier
5   Univ. Paris-Sud, Faculté de Médecine, Le Kremlin-Bicêtre, France
6   Inserm UMR-S999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
11   Service de chirurgie thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
,
Marc Humbert
5   Univ. Paris-Sud, Faculté de Médecine, Le Kremlin-Bicêtre, France
6   Inserm UMR-S999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
12   AP-HP, Hôpital Bicêtre, Service de Pneumologie, DHU Thorax Innovation (TORINO), Le Kremlin-Bicêtre, France
,
Pascale Gaussem
2   Université Paris Descartes, Sorbonne Paris Cite, Paris, France
3   AP-HP, Hôpital Européen Georges Pompidou, Service d`Hématologie Biologique, Paris, France
4   Inserm UMR-S1140, Paris, France
,
Joyce Bischoff
1   Vascular Biology Program and Surgery Department, Children`s Hospital, Harvard Medical School, Boston, Massachusetts, USA
,
Dominique Israël-Biet
2   Université Paris Descartes, Sorbonne Paris Cite, Paris, France
4   Inserm UMR-S1140, Paris, France
13   AP-HP, Hôpital Européen Georges Pompidou, Service de Pneumologie, Centre de compétences Maladies rares pulmonaires, Paris, France
› Author Affiliations
Financial support: The authors received research grants from Chancellerie des Universités (Leg Poix) and Conny-Maeva Charitable Foundation.
Further Information

Publication History

Received: 28 September 2014

Accepted after major revision: 17 June 2014

Publication Date:
20 November 2017 (online)

Summary

Fibrotic diseases of the lung are associated with a vascular remodelling process. Fibrocytes (Fy) are a distinct population of blood-borne cells that co-express haematopoietic cell antigens and fibroblast markers, and have been shown to contribute to organ fibrosis. The purpose of this study was to determine whether fibrocytes cooperate with endothelial colony-forming cells (ECFC) to induce angiogenesis. We isolated fibrocytes from blood of patient with idiopathic pulmonary fibrosis (IPF) and characterised them by flow cytometry, quantitative reverse transcriptase PCR (RTQ-PCR), and confocal microscopy. We then investigated the angiogenic interaction between fibrocytes and cordblood- derived ECFC, both in vitro and in an in vivo Matrigel implant model. Compared to fibroblast culture medium, fibrocyte culture medium increased ECFC proliferation and differentiation via the SDF- 1/CXCR4 pathway. IPF-Fy co-implanted with human ECFC in Matrigel plugs in immunodeficient mice formed functional microvascular beds, whereas fibroblasts did not. Evaluation of implants after two weeks revealed an extensive network of erythrocyte-containing blood vessels. CXCR4 blockade significantly inhibited this blood vessel formation. The clinical relevance of these data was confirmed by strong CXCR4 expression in vessels close to fibrotic areas in biopsy specimens from patients with IPF, by comparison with control lungs. In conclusion, circulating fibrocytes might contribute to the intense remodelling of the pulmonary vasculature in patients with idiopathic pulmonary fibrosis.

 
  • References

  • 1 Varcoe RL, Mikhail M, Guiffre AK. et al. The role of the fibrocyte in intimal hyperplasia. J Thromb Haemost 2006; 4: 1125-1133.
  • 2 Medbury HJ, Tarran SL, Guiffre AK. et al. Monocytes contribute to the athero-sclerotic cap by transformation into fibrocytes. Int Angiol 2008; 27: 114-123.
  • 3 Barth PJ, Koster H, Moosdorf R. CD34+ fibrocytes in normal mitral valves and myxomatous mitral valve degeneration. Pathol Res Pract 2005; 201: 301-304.
  • 4 Onuta G, van Ark J, Rienstra H. et al. Development of transplant vasculopathy in aortic allografts correlates with neointimal smooth muscle cell proliferative capacity and fibrocyte frequency. Atherosclerosis 2010; 209: 393-402.
  • 5 Strieter RM, Keeley EC, Hughes MA. et al. The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of pulmonary fibrosis. J Leukoc Biol 2009; 86: 1111-1118.
  • 6 Tourkina E, Bonner M, Oates J. et al. Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: reversal by caveolin-1 scaffolding domain peptide. Fibrogenesis Tissue Repair 2011; 4: 15.
  • 7 Phillips RJ, Burdick MD, Hong K. et al. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest 2004; 112: 438-446.
  • 8 Moore BB, Murray L, Das A. et al. The role of CCL12 in the recruitment of fibrocytes and lung fibrosis. Am J Respir Cell Mol Biol 2006; 35: 175-181.
  • 9 Moeller A, Gilpin SE, Ask K. et al. Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2009; 179: 588-594.
  • 10 Fujiwara A, Kobayashi H, Masuya M. et al. Correlation between circulating fibrocytes, and activity and progression of interstitial lung diseases. Respirology 2012; 17: 693-698.
  • 11 Ebina M, Shimizukawa M, Shibata N. et al. Heterogeneous increase in CD34-positive alveolar capillaries in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2004; 169: 1203-1208.
  • 12 Farkas L, Gauldie J, Voelkel NF. et al. Pulmonary hypertension and idiopathic pulmonary fibrosis: a tale of angiogenesis, apoptosis, and growth factors. Am J Respir Cell Mol Biol 2011; 45: 1-15.
  • 13 Kao HK, Chen B, Murphy GF. et al. Peripheral blood fibrocytes: enhancement of wound healing by cell proliferation, re-epithelialisation, contraction, and angio-genesis. Ann Surg 2011; 254: 1066-1074.
  • 14 Hartlapp I, Abe R, Saeed RW. et al. Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo. Faseb J 2001; 15: 2215-2224.
  • 15 Fadini GP, Agostini C, Avogaro A. Autologous stem cell therapy for peripheral arterial disease meta-analysis and systematic review of the literature. Atherosclerosis 2010; 209: 10-17.
  • 16 Yoder MC, Mead LE, Prater D. et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007; 109: 1801-1809.
  • 17 Huang L, Critser PJ, Grimes BR. et al. Human umbilical cord blood plasma can replace fetal bovine serum for in vitro expansion of functional human endothelial colony-forming cells. Cytotherapy 2011; 13: 712-721.
  • 18 Melero-Martin JM, De Obaldia ME, Kang SY. et al. Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res 2008; 103: 194-202.
  • 19 Smadja DM, Mauge L, Nunes H. et al. Imbalance of circulating endothelial cells and progenitors in idiopathic pulmonary fibrosis. Angiogenesis 2013; 16: 147-157.
  • 20 Raghu G, Collard HR, Egan JJ. et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidellines for diagnosis and management. Am J Respir Crit Care Med 2011; 183: 788-824.
  • 21 Smadja DM, Bieche I, Uzan G. et al. PAR-1 activation on human late endothelial progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. Arterioscler Thromb Vasc Biol 2005; 25: 2321-2327.
  • 22 Smadja DM, Bieche I, Silvestre JS. et al. Bone morphogenetic proteins 2 and 4 are selectively expressed by late outgrowth endothelial progenitor cells and promote neoangiogenesis. Arterioscler Thromb Vasc Biol 2008; 28: 2137-2143.
  • 23 Kotecki M, Zeiger AS, Van Vliet KJ. et al. Calpain- and talin-dependent control of microvascular pericyte contractility and cellular stiffness. Microvasc Res 2010; 80: 339-348.
  • 24 Boscolo E, Stewart CL, Greenberger S. et al. JAGGED1 Signaling Regulates Hemangioma Stem Cell-to-Pericyte/Vascular Smooth Muscle Cell Differentiation. Arterioscler Thromb Vasc Biol 2011; 31: 2181-2192.
  • 25 Melero-Martin JM, Khan ZA, Picard A. et al. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 2007; 109: 4761-4768.
  • 26 Smadja DM, Mulliken JB, Bischoff J. E-selectin mediates stem cell adhesion and formation of blood vessels in a murine model of infantile hemangioma. Am J Pathol 2012; 181: 2239-2247.
  • 27 Bujak M, Dobaczewski M, Gonzalez-Quesada C. et al. Induction of the CXC chemokine interferon-gamma-inducible protein 10 regulates the reparative response following myocardial infarction. Circ Res 2009; 105: 973-983.
  • 28 Chu PY, Mariani J, Finch S. et al. Bone marrow-derived cells contribute to fibrosis in the chronically failing heart. Am J Pathol 2010; 176: 1735-1742.
  • 29 Haudek SB, Xia Y, Huebener P. et al. Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad Sci USA 2006; 103: 18284-18289.
  • 30 Khan ZA, Boscolo E, Picard A. et al. Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. J Clin Invest 2008; 118: 2592-2599.
  • 31 Smadja DM, Guerin CL, Boscolo E. et al. alpha6-integrin is required for the adhesion and vasculogenic potential of hemangioma stem cells. Stem Cells 2014; 32: 684-693.
  • 32 Yeager ME, Nguyen CM, Belchenko DD. et al. Circulating fibrocytes are increased in children and young adults with pulmonary hypertension. Eur Respir J 2011; 39: 104-111.
  • 33 Stenmark KR, Frid MG, Yeager ME. Fibrocytes: potential new therapeutic targets for pulmonary hypertension?. Eur Respir J 2010; 36: 1232-1235.
  • 34 Bucala R, Spiegel LA, Chesney J. et al. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1994; 1: 71-81.
  • 35 Smadja DM, Bieche I, Susen S. et al. Interleukin 8 is differently expressed and modulated by PAR-1 activation in early and late endothelial progenitor cells. J Cell Mol Med 2009; 13: 2534-2546.
  • 36 Schomig K, Busch G, Steppich B. et al. Interleukin-8 is associated with circulating CD133+ progenitor cells in acute myocardial infarction. Eur Heart J 2006; 27: 1032-1037.
  • 37 Schneider M, Hansen JL, Sheikh SP. S100A4: a common mediator of epithelialmesenchymal transition, fibrosis and regeneration in diseases?. J Mol Med 2008; 86: 507-522.
  • 38 Bridges RS, Kass D, Loh K. et al. Gene expression profiling of pulmonary fibrosis identifies Twist1 as an antiapoptotic molecular “rectifier” of growth factor signaling. Am J Pathol 2009; 175: 2351-2361.
  • 39 Pozharskaya V, Torres-Gonzalez E, Rojas M. et al. Twist: a regulator of epithelial-mesenchymal transition in lung fibrosis. PLoS One 2009; 4: e7559.
  • 40 Lawson WE, Polosukhin VV, Zoia O. et al. Characterisation of fibroblast-specific protein 1 in pulmonary fibrosis. Am J Respir Crit Care Med 2005; 171: 899-907.
  • 41 Niu RF, Zhang L, Xi GM. et al. Up-regulation of Twist induces angiogenesis and correlates with metastasis in hepatocellular carcinoma. J Exp Clin Cancer Res 2007; 26: 385-394.
  • 42 Yamaguchi J, Kusano KF, Masuo O. et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularisation. Circulation 2003; 107: 1322-1328.
  • 43 Oh BJ, Kim DK, Kim BJ. et al. Differences in donor CXCR4 expression levels are correlated with functional capacity and therapeutic outcome of angiogenic treatment with endothelial colony forming cells. Biochem Biophys Res Commun 2010; 398: 627-633.
  • 44 Smadja DM, d’Audigier C, Bieche I. et al. Thrombospondin-1 is a plasmatic marker of peripheral arterial disease that modulates endothelial progenitor cell angiogenic properties. Arterioscler Thromb Vasc Biol 2011; 31: 551-559.
  • 45 Smadja DM, d’Audigier C, Weiswald LB. et al. The Wnt antagonist Dickkopf-1 increases endothelial progenitor cell angiogenic potential. Arterioscler Thromb Vasc Biol 2010; 30: 2544-2552.
  • 46 Zemani F, Silvestre JS, Fauvel-Lafeve F. et al. Ex vivo priming of endothelial progenitor cells with SDF-1 before transplantation could increase their proangiogenic potential. Arterioscler Thromb Vasc Biol 2008; 28: 644-650.
  • 47 Strieter RM, Gomperts BN, Keane MP. The role of CXC chemokines in pulmonary fibrosis. J Clin Invest 2007; 117: 549-556.
  • 48 Mirshahi F, Pourtau J, Li H. et al. SDF-1 activity on microvascular endothelial cells: consequences on angiogenesis in in vitro and in vivo models. Thromb Res 2000; 99: 587-594.
  • 49 Costello CM, McCullagh B, Howell K. et al. A role for the CXCL12 receptor, CXCR7, in the pathogenesis of human pulmonary vascular disease. Eur Respir J 2012; 39: 1415-1424.
  • 50 Otani Y, Kijima T, Kohmo S. et al. Suppression of metastases of small cell lung cancer cells in mice by a peptidic CXCR4 inhibitor TF14016. FEBS Lett 2012; 586: 3639-3644.