Thromb Haemost 2007; 98(05): 944-951
DOI: 10.1160/TH07-02-0128
Theme Issue Article
Schattauer GmbH

Adrenomedullin and endothelial barrier function

Bettina Temmesfeld-Wollbrück
1   Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
,
Andreas C. Hocke
1   Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
,
Norbert Suttorp
1   Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
,
Stefan Hippenstiel
1   Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
› Author Affiliations
Financial support:This work was supported by the Deutsche Forschungsgemeinschaft to S.H. (HI 789/6–1), and the Bundesministerium für Bildung und Forschung to S. H. and N. S. (BMBF-Competence Network CAPNETZ and PROGRESS), and the Charité –Universitätsmedizin Berlin to B. T.-W. (Rahel-Hirsch award).
Further Information

Publication History

Received 19 February 2007

Accepted after resubmission 12 July 2007

Publication Date:
30 November 2017 (online)

Summary

Although loss of endothelial barrier function is a hallmark of every acute inflammation and contributes to fatal loss of organ function during severe infections, there is no sufficient therapy for stabilization of endothelial barrier function. Endogenous peptide adrenomedullin (AM) serum levels were shown to be increased during severe infection including sepsis and septic shock. In different in-vitro and in-vivo models AM acted as a potent therapeutic endothelial barrier function-stabilizing agent. Activation of specific receptors by AM results in elevation of second messenger cAMP. AM inhibits actin-myosin based endothelial cell contraction and junctional disassembly, thereby preventing paracellular permeability and oedema formation. The peptide furthermore possesses several protective cardiovascular qualities, including protection of the microcirculation during inflammation, and was proven as an efficient counter-regulatory molecule in various models of sepsis and septic shock. Overall, AM may be an attractive molecule to combat against cardiovascular malfunction during severe infection.

 
  • References

  • 1 Bazzoni G. Endothelial tight junctions: permeable barriers of the vessel wall. Thromb Haemost 2006; 95: 36-42.
  • 2 Lush CW, Kvietys PR. Microvascular dysfunction in sepsis. Microcirculation 2000; 7: 83-101.
  • 3 Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev 2006; 86: 279-367.
  • 4 Nieuw Amerongen GP, van Hinsbergh VW. Targets for pharmacological intervention of endothelial hyperpermeability and barrier function. Vascul Pharmacol 2002; 39: 257-272.
  • 5 Stevens T, Garcia JG, Shasby DM. et al. Mechanisms regulating endothelial cell barrier function. Am J Physiol Lung Cell Mol Physiol 2000; 279: L419-L422.
  • 6 Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med 2003; 348: 138-150.
  • 7 Volk T, Kox WJ. Endothelium function in sepsis. Inflamm Res 2000; 49: 185-198.
  • 8 Hippenstiel S, Suttorp N. Interaction of pathogens with the endothelium. Thromb Haemost 2003; 89: 18-24.
  • 9 Fink MP, Delude RL. Epithelial barrier dysfunction: a unifying theme to explain the pathogenesis of multiple organ dysfunction at the cellular level. Crit Care Clin 2005; 21: 177-196.
  • 10 Suratt BT, Parsons PE. Mechanisms of acute lung injury/acute respiratory distress syndrome. Clin Chest Med 2006; 27: 579-589.
  • 11 Orfanos SE, Mavrommati I, Korovesi I. et al. Pulmonary endothelium in acute lung injury: from basic science to the critically ill. Intensive Care Med 2004; 30: 1702-1714.
  • 12 Marx G. Fluid therapy in sepsis with capillary leakage. Eur J Anaesthesiol 2003; 20: 429-442.
  • 13 Davies DC. Blood-brain barrier breakdown in septic encephalopathy and brain tumours. J Anat 2002; 200: 639-646.
  • 14 Abbott NJ. Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol 2000; 20: 131-147.
  • 15 van Hinsbergh WM. Endothelial permeability for macromolecules. Mechanistic aspects of pathophysiological modulation. Arterioscler Thromb Vasc Biol 1997; 17: 1018-1023.
  • 16 Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 2004; 84: 869-901.
  • 17 Hirase T, Staddon JM, Saitou M. et al. Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 1997; 110: 1603-1613.
  • 18 Orlova VV, Economopoulou M, Lupu F. et al. Junctional adhesion molecule-C regulates vascular endothelial permeability by modulating VE-cadherin-mediated cell-cell contacts. J Exp Med 2006; 203: 2703-2714.
  • 19 van Hinsbergh VW, van Amerongen GP. Intracellular signalling involved in modulating human endothelial barrier function. J Anat 2002; 200: 549-560.
  • 20 Yuan SY. Protein kinase signaling in the modulation of microvascular permeability. Vascul Pharmacol 2002; 39: 213-223.
  • 21 Bogatcheva NV, Garcia JG, Verin AD. Molecular mechanisms of thrombin-induced endothelial cell permeability. Biochemistry (Mosc ) 2002; 67: 75-84.
  • 22 Nieuw Amerongen GP, van Hinsbergh VW. Cytoskeletal effects of rho-like small guanine nucleotidebinding proteins in the vascular system. Arterioscler Thromb Vasc Biol 2001; 21: 300-311.
  • 23 Garcia JG, Verin AD, Schaphorst KL. Regulation of thrombin-mediated endothelial cell contraction and permeability. Semin Thromb Hemost 1996; 22: 309-315.
  • 24 Miller FN, Sims DE. Contractile elements in the regulation of macromolecular permeability. Fed Proc 1986; 45: 84-88.
  • 25 Bogatcheva NV, Adyshev D, Mambetsariev B. et al. Involvement of microtubules, p38 and Rho kinases pathway in 2-methoxyestradiol-induced lung vascular barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2006; 292: L487-499.
  • 26 Birukova AA, Birukov KG, Adyshev D. et al. Involvement of microtubules and Rho pathway in TGFbeta1- induced lung vascular barrier dysfunction. J Cell Physiol 2005; 204: 934-947.
  • 27 Birukova AA, Birukov KG, Gorshkov B. et al. MAP kinases in lung endothelial permeability induced by microtubule disassembly. Am J Physiol Lung Cell Mol Physiol 2005; 289: L75-L84.
  • 28 Birukova AA, Birukov KG, Smurova K. et al. Novel role of microtubules in thrombin-induced endothelial barrier dysfunction. FASEB J 2004; 18: 1879-1890.
  • 29 Birukova AA, Smurova K, Birukov KG. et al. Microtubule disassembly induces cytoskeletal remodeling and lung vascular barrier dysfunction: role of Rho-dependent mechanisms. J Cell Physiol 2004; 201: 55-70.
  • 30 Petrache I, Birukova A, Ramirez SI. et al. The role of the microtubules in tumor necrosis factor-alpha-induced endothelial cell permeability. Am J Respir Cell Mol Biol 2003; 28: 574-581.
  • 31 Katz J, Sambandam V, Wu JH. et al. Characterization of Porphyromonas gingivalis-induced degradation of epithelial cell junctional complexes. Infect Immun 2000; 68: 1441-1449.
  • 32 Katz J, Yang QB, Zhang P. et al. Hydrolysis of epithelial junctional proteins by Porphyromonas gingivalis gingipains. Infect Immun 2002; 70: 2512-2518.
  • 33 Carden D, Xiao F, Moak C. et al. Neutrophil elastase promotes lung microvascular injury and proteolysis of endothelial cadherins. Am J Physiol 1998; 275: H385-H392.
  • 34 Suttorp N, Nolte A, Wilke A. et al. Human neutrophil elastase increases permeability of cultured pulmonary endothelial cell monolayers. Int J Microcirc Clin Exp 1993; 13: 187-203.
  • 35 Brell B, Hippenstiel S, David I. et al. Adrenomedullin treatment abolishes ileal mucosal hypoperfusion induced by Staphylococcus aureus alpha-toxin--an intravital microscopic study on an isolated rat ileum. Crit Care Med 2005; 33: 2810-2816.
  • 36 Seeger W, Birkemeyer RG, Ermert L. et al. Staphylococcal alpha-toxin-induced vascular leakage in isolated perfused rabbit lungs. Lab Invest 1990; 63: 341-349.
  • 37 Suttorp N, Hessz T, Fuchs T. et al. Effects of bacterial toxins and calcium-ionophores on endothelial permeability in vitro. Prog Clin Biol Res 1989; 308: 127-131.
  • 38 Suttorp N, Hessz T, Seeger W. et al. Bacterial exotoxins and endothelial permeability for water and albumin in vitro. Am J Physiol 1988; 255: C368-C376.
  • 39 Hippenstiel S, Witzenrath M, Schmeck B. et al. Adrenomedullin reduces endothelial hyperpermeability. Circ Res 2002; 91: 618-625.
  • 40 Suttorp N, Hippenstiel S, Fuhrmann M. et al. Role of nitric oxide and phosphodiesterase isoenzyme II for reduction of endothelial hyperpermeability. Am J Physiol 1996; 270: C778-C785.
  • 41 Seeger W, Walter H, Neuhof H. et al. Escherichia coli hemolysin causes thromboxane-mediated hypertension and vascular leakage in rabbit lungs. Prog Clin Biol Res 1989; 308: 67-72.
  • 42 Seeger W, Hansen T, Rossig R. et al. Hydrogen peroxide- induced increase in lung endothelial and epithelial permeability--effect of adenylate cyclase stimulation and phosphodiesterase inhibition. Microvasc Res 1995; 50: 1-17.
  • 43 Suttorp N, Weber U, Welsch T. et al. Role of phosphodiesterases in the regulation of endothelial permeability in vitro. J Clin Invest 1993; 91: 1421-1428.
  • 44 Seybold J, Thomas D, Witzenrath M. et al. Tumor necrosis factor-alpha-dependent expression of phosphodiesterase 2: role in endothelial hyperpermeability. Blood 2005; 105: 3569-3576.
  • 45 Kitamura K, Kangawa K, Kawamoto M. et al. Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun 1993; 192: 553-560.
  • 46 Poyner DR, Sexton PM, Marshall I. et al. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev 2002; 54: 233-246.
  • 47 Lopez J, Martinez A. Cell and molecular biology of the multifunctional peptide, adrenomedullin. Int Rev Cytol 2002; 221: 1-92.
  • 48 Beltowski J, Jamroz A. Adrenomedullin--what do we know 10 years since its discovery?. Pol J Pharmacol 2004; 56: 5-27.
  • 49 Jougasaki M, Burnett Jr. JC. Adrenomedullin: potential in physiology and pathophysiology. Life Sci 2000; 66: 855-872.
  • 50 Shimosawa T, Fujita T. Adrenomedullin and its related peptide. Endocr J 2005; 52: 1-10.
  • 51 Kitamura K, Kangawa K, Ishiyama Y. et al. Identification and hypotensive activity of proadrenomedullin N-terminal 20 peptide (PAMP). FEBS Lett 1994; 351: 35-37.
  • 52 Kitamura K, Kangawa K, Eto T. Adrenomedullin and PAMP: discovery, structures, and cardiovascular functions. Microsc Res Tech 2002; 57: 3-13.
  • 53 Martinez A, Hodge DL, Garayoa M. et al. Alternative splicing of the proadrenomedullin gene results in differential expression of gene products. J Mol Endocrinol 2001; 27: 31-41.
  • 54 Samson WK. Proadrenomedullin-derived peptides. Front Neuroendocrinol 1998; 19: 100-127.
  • 55 Struck J, Tao C, Morgenthaler NG. et al. Identification of an Adrenomedullin precursor fragment in plasma of sepsis patients. Peptides 2004; 25: 1369-1372.
  • 56 Watanabe TX, Itahara Y, Inui T. et al. Vasopressor activities of N-terminal fragments of adrenomedullin in anesthetized rat. Biochem Biophys Res Commun 1996; 219: 59-63.
  • 57 Gumusel B, Hao Q, Hyman AL. et al. Analysis of responses to adrenomedullin-(13–52) in the pulmonary vascular bed of rats. Am J Physiol 1998; 274: H1255-H1263.
  • 58 Eguchi S, Hirata Y, Iwasaki H. et al. Structure-activity relationship of adrenomedullin, a novel vasodilatory peptide, in cultured rat vascular smooth muscle cells. Endocrinology 1994; 135: 2454-2458.
  • 59 Shimosawa T, Kanozawa K, Nagasawa R. et al. Adrenomedullin amidation enzyme activities in hypertensive patients. Hypertens Res 2000; 23: 167-171.
  • 60 Hirayama N, Kitamura K, Imamura T. et al. Secretion and clearance of the mature form of adrenomedullin in humans. Life Sci 1999; 64: 2505-2509.
  • 61 Kitamura K, Kato J, Kawamoto M. et al. The intermediate form of glycine-extended adrenomedullin is the major circulating molecular form in human plasma. Biochem Biophys Res Commun 1998; 244: 551-555.
  • 62 Isumi Y, Shoji H, Sugo S. et al. Regulation of adrenomedullin production in rat endothelial cells. Endocrinology 1998; 139: 838-846.
  • 63 Tomoda Y, Isumi Y, Katafuchi T. et al. Regulation of adrenomedullin secretion from cultured cells. Peptides 2001; 22: 1783-1794.
  • 64 Zaks-Zilberman M, Salkowski CA, Elsasser T. et al. Induction of adrenomedullin mRNA and protein by lipopolysaccharide and paclitaxel (Taxol) in murine macrophages. Infect Immun 1998; 66: 4669-4675.
  • 65 Zhou M, Chaudry IH, Wang P. Adrenomedullin is upregulated in the heart and aorta during the early and late stages of sepsis. Biochim Biophys Acta 1999; 1453: 273-283.
  • 66 Zhou M, Chaudry IH, Wang P. The small intestine is an important source of adrenomedullin release during polymicrobial sepsis. Am J Physiol Regul Integr Comp Physiol 2001; 281: R654-R660.
  • 67 Albertin G, Ruggero M, Guidolin D. et al. Gene silencing of human RAMP2 mediated by short-interfering RNA. Int J Mol Med 2006; 18: 531-535.
  • 68 Buhlmann N, Leuthauser K, Muff R. et al. A receptor activity modifying protein (RAMP)2-dependent adrenomedullin receptor is a calcitonin gene-related peptide receptor when coexpressed with human RAMP1. Endocrinology 1999; 140: 2883-2890.
  • 69 Conner AC, Simms J, Hay DL. et al. Heterodimers and family-B GPCRs: RAMPs, CGRP and adrenomedullin. Biochem Soc Trans 2004; 32: 843-846.
  • 70 Dackor RT, Fritz-Six K, Dunworth WP. et al. Hydrops fetalis, cardiovascular defects, and embryonic lethality in mice lacking the calcitonin receptor-like receptor gene. Mol Cell Biol 2006; 26: 2511-2518.
  • 71 Dschietzig T, Azad HA, Asswad L. et al. The adrenomedullin receptor acts as clearance receptor in pulmonary circulation. Biochem Biophys Res Commun 2002; 294: 315-318.
  • 72 Gibbons C, Dackor R, Dunworth W. et al. Receptor activity-modifying proteins: RAMPing up adrenomedullin signaling. Mol Endocrinol 2006; 21: 783-796.
  • 73 Grant AD, Tam CW, Lazar Z. et al. The calcitonin gene-related peptide (CGRP) receptor antagonist BIBN4096BS blocks CGRP and adrenomedullin vasoactive responses in the microvasculature. Br J Pharmacol 2004; 142: 1091-1098.
  • 74 Hay DL, Poyner DR, Smith DM. Desensitisation of adrenomedullin and CGRP receptors. Regul Pept 2003; 112: 139-145.
  • 75 Kamitani S, Asakawa M, Shimekake Y. et al. The RAMP2/CRLR complex is a functional adrenomedullin receptor in human endothelial and vascular smooth muscle cells. FEBS Lett 1999; 448: 111-114.
  • 76 Nikitenko LL, Blucher N, Fox SB. et al. Adrenomedullin and CGRP interact with endogenous calcitoninreceptor- like receptor in endothelial cells and induce its desensitisation by different mechanisms. J Cell Sci 2006; 119: 910-922.
  • 77 Smith DM, Coppock HA, Withers DJ. et al. Adrenomedullin: receptor and signal transduction. Biochem Soc Trans 2002; 30: 432-437.
  • 78 Tam CW, Husmann K, Clark NC. et al. Enhanced vascular responses to adrenomedullin in mice overexpressing receptor-activity-modifying protein 2. Circ Res 2006; 98: 262-270.
  • 79 Barker S, Kapas S, Corder R. et al. Adrenomedullin acts via stimulation of cyclic AMP and not via calcium signalling in vascular cells in culture. J Hum Hypertens 1996; 10: 421-423.
  • 80 Kuwasako K, Cao YN, Nagoshi Y. et al. Adrenomedullin receptors: pharmacological features and possible pathophysiological roles. Peptides 2004; 25: 2003-2012.
  • 81 Shimekake Y, Nagata K, Ohta S. et al. Adrenomedullin stimulates two signal transduction pathways, cAMP accumulation and Ca2+ mobilization, in bovine aortic endothelial cells. J Biol Chem 1995; 270: 4412-4417.
  • 82 Yurugi-Kobayashi T, Itoh H, Schroeder T. et al. Adrenomedullin/ cyclic AMP pathway induces Notch activation and differentiation of arterial endothelial cells from vascular progenitors. Arterioscler Thromb Vasc Biol 2006; 26: 1977-1984.
  • 83 Dong F, Taylor MM, Samson WK. et al. Intermedin (adrenomedullin-2) enhances cardiac contractile function via a protein kinase C- and protein kinase A-dependent pathway in murine ventricular myocytes. J Appl Physiol 2006; 101: 778-784.
  • 84 Parameswaran N, Hall CS, McCabe LR. et al. Adrenomedullin increases AP-1 expression in rat mesangial cells via activation of protein kinase-A and p38 MAPK. Cell Physiol Biochem 2003; 13: 367-374.
  • 85 Xu Y, Krukoff TL. Adrenomedullin in the rostral ventrolateral medulla inhibits baroreflex control of heart rate: a role for protein kinase A. Br J Pharmacol 2006; 148: 70-77.
  • 86 Liu J, Shimosawa T, Matsui H. et al. Adrenomedullin inhibits angiotensin II-induced oxidative stress via Csk-mediated inhibition of Src activity. Am J Physiol Heart Circ Physiol 2007; 292: H1714-1721.
  • 87 Kim W, Moon SO, Sung MJ. et al. Angiogenic role of adrenomedullin through activation of Akt, mitogenactivated protein kinase, and focal adhesion kinase in endothelial cells. FASEB J 2003; 17: 1937-1939.
  • 88 Miyashita K, Itoh H, Sawada N. et al. Adrenomedullin provokes endothelial Akt activation and promotes vascular regeneration both in vitro and in vivo. FEBS Lett 2003; 544: 86-92.
  • 89 Nishimatsu H, Suzuki E, Nagata D. et al. Adrenomedullin induces endothelium-dependent vasorelaxation via the phosphatidylinositol 3-kinase/Akt-dependent pathway in rat aorta. Circ Res 2001; 89: 63-70.
  • 90 Okumura H, Nagaya N, Itoh T. et al. Adrenomedullin infusion attenuates myocardial ischemia/reperfusion injury through the phosphatidylinositol 3-kinase/ Akt-dependent pathway. Circulation 2004; 109: 242-248.
  • 91 Parameswaran N, Nambi P, Hall CS. et al. Adrenomedullin decreases extracellular signal-regulated kinase activity through an increase in protein phosphatase- 2A activity in mesangial cells. Eur J Pharmacol 2000; 388: 133-138.
  • 92 Garcia MA, Martin-Santamaria S, Pascual-Teresa B. et al. Adrenomedullin: a new and promising target for drug discovery. Expert Opin Ther Targets 2006; 10: 303-317.
  • 93 Hinson JP, Kapas S, Smith DM. Adrenomedullin, a multifunctional regulatory peptide. Endocr Rev 2000; 21: 138-167.
  • 94 Kato J, Tsuruda T, Kita T. et al. Adrenomedullin: a protective factor for blood vessels. Arterioscler Thromb Vasc Biol 2005; 25: 2480-2487.
  • 95 Nikitenko LL, Smith DM, Hague S. et al. Adrenomedullin and the microvasculature. Trends Pharmacol Sci 2002; 23: 101-103.
  • 96 Nikitenko LL, Fox SB, Kehoe S. et al. Adrenomedullin and tumour angiogenesis. Br J Cancer 2006; 94: 1-7.
  • 97 Samson WK. Adrenomedullin and the control of fluid and electrolyte homeostasis. Annu Rev Physiol 1999; 61: 363-389.
  • 98 Vijay P. Adrenomedullin in the treatment of pulmonary hypertension. Heart 2000; 84: 575-576.
  • 99 Wang P. Adrenomedullin in sepsis and septic shock. Shock 1998; 10: 383-384.
  • 100 Wang P. Andrenomedullin and cardiovascular responses in sepsis. Peptides 2001; 22: 1835-1840.
  • 101 Allaker RP, Grosvenor PW, McAnerney DC. et al. Mechanisms of adrenomedullin antimicrobial action. Peptides 2005; 27: 661-666.
  • 102 Zudaire E, Portal-Nunez S, Cuttitta F. The central role of adrenomedullin in host defense. J Leukoc Biol 2006; 80: 237-244.
  • 103 Hirata Y, Mitaka C, Sato K. et al. Increased circulating adrenomedullin, a novel vasodilatory peptide, in sepsis. J Clin Endocrinol Metab 1996; 81: 1449-1453.
  • 104 Nishio K, Akai Y, Murao Y. et al. Increased plasma concentrations of adrenomedullin correlate with relaxation of vascular tone in patients with septic shock. Crit Care Med 1997; 25: 953-957.
  • 105 Ueda S, Nishio K, Minamino N. et al. Increased plasma levels of adrenomedullin in patients with systemic inflammatory response syndrome. Am J Respir Crit Care Med 1999; 160: 132-136.
  • 106 Christ-Crain M, Morgenthaler NG, Stolz D. et al. Pro-adrenomedullin to predict severity and outcome in community-acquired pneumonia [ISRCTN04176397]. Crit Care 2006; 10: R96.
  • 107 Wang P, Zhou M, Ba ZF. et al. Up-regulation of a novel potent vasodilatory peptide adrenomedullin during polymicrobial sepsis. Shock 1998; 10: 118-122.
  • 108 Li YY, Wong LY, Cheung BM. et al. Differential induction of adrenomedullin, interleukins and tumour necrosis factor-alpha by lipopolysaccharide in rat tissues in vivo. Clin Exp Pharmacol Physiol 2005; 32: 1110-1118.
  • 109 Cheung BM, Hwang IS, Li CY. et al. Increased adrenomedullin expression in lungs in endotoxaemia. J Endocrinol 2004; 181: 339-345.
  • 110 Matsui E, Kitamura K, Yoshida M. et al. Biosynthesis and secretion of adrenomedullin and proadrenomedullin N-terminal 20 peptide in a rat model of endotoxin shock. Hypertens Res 2001; 24: 543-549.
  • 111 Agorreta J, Zulueta JJ, Montuenga LM. et al. Adrenomedullin expression in a rat model of acute lung injury induced by hypoxia and LPS. Am J Physiol Lung Cell Mol Physiol 2005; 288: L536-L545.
  • 112 Caron KM, Smithies O. Extreme hydrops fetalis and cardiovascular abnormalities in mice lacking a functional adrenomedullin gene. Proc Natl Acad Sci U S A 2001; 98: 615-619.
  • 113 Czyzyk TA, Ning Y, Hsu MS. et al. Deletion of peptide amidation enzymatic activity leads to edema and embryonic lethality in the mouse. Dev Biol 2005; 287: 301-313.
  • 114 Brell B, Temmesfeld-Wollbruck B, Altzschner I. et al. Adrenomedullin reduces Staphylococcus aureus alpha-toxin-induced rat ileum microcirculatory damage. Crit Care Med 2005; 33: 819-826.
  • 115 Hocke AC, Temmesfeld-Wollbrueck B, Schmeck B. et al. Perturbation of endothelial junction proteins by Staphylococcus aureus alpha-toxin: inhibition of endothelial gap formation by adrenomedullin. Histochem Cell Biol 2006; 126: 305-316.
  • 116 Kis B, Deli MA, Kobayashi H. et al. Adrenomedullin regulates blood-brain barrier functions in vitro. Neuroreport 2001; 12: 4139-4142.
  • 117 Kis B, Snipes JA, Deli MA. et al. Chronic adrenomedullin treatment improves blood-brain barrier function but has no effects on expression of tight junction proteins. Acta Neurochir Suppl 2003; 86: 565-568.
  • 118 Ohbayashi H, Suito H, Yoshida N. et al. Adrenomedullin inhibits ovalbumin-induced bronchoconstriction and airway microvascular leakage in guinea-pigs. Eur Respir J 1999; 14: 1076-1081.
  • 119 Tam C, Brain SD. The assessment of vasoactive properties of CGRP and adrenomedullin in the microvasculature: a study using in vivo and in vitro assays in the mouse. J Mol Neurosci 2004; 22: 117-124.
  • 120 Honda M, Nakagawa S, Hayashi K. et al. Adrenomedullin improves the blood-brain barrier function through the expression of claudin-5. Cell Mol Neurobiol 2006; 26: 109-118.
  • 121 Suttorp N, Ehreiser P, Hippenstiel S. et al. Hyperpermeability of pulmonary endothelial monolayer: protective role of phosphodiesterase isoenzymes 3 and 4. Lung 1996; 174: 181-194.
  • 122 Szokodi I, Kinnunen P, Tavi P. et al. Evidence for cAMP-independent mechanisms mediating the effects of adrenomedullin, a new inotropic peptide. Circulation 1998; 97: 1062-1070.
  • 123 Bos JL. Epac proteins: multi-purpose cAMP targets. Trends Biochem Sci 2006; 31: 680-686.
  • 124 Cullere X, Shaw SK, Andersson L. et al. Regulation of vascular endothelial barrier function by Epac, a cAMP-activated exchange factor for Rap GTPase. Blood 2005; 105: 1950-1955.
  • 125 Fukuhara S, Sakurai A, Sano H. et al. Cyclic AMP potentiates vascular endothelial cadherin-mediated cell-cell contact to enhance endothelial barrier function through an Epac-Rap1 signaling pathway. Mol Cell Biol 2005; 25: 136-146.
  • 126 Akiyama S, Hatanaka Y, Hobara N. et al. Effect of adrenomedullin on adrenergic vasoconstriction in mesenteric resistance arteries of the rat. J Pharmacol Sci 2005; 99: 264-271.
  • 127 Shindo T, Kurihara H, Maemura K. et al. Hypotension and resistance to lipopolysaccharide-induced shock in transgenic mice overexpressing adrenomedullin in their vasculature. Circulation 2000; 101: 2309-2316.
  • 128 Shindo T, Kurihara Y, Nishimatsu H. et al. Vascular abnormalities and elevated blood pressure in mice lacking adrenomedullin gene. Circulation 2001; 104: 1964-1971.
  • 129 Shirai M, Shimouchi A, Ikeda S. et al. Vasodilator effects of adrenomedullin on small pulmonary arteries and veins in anaesthetized cats. Br J Pharmacol 1997; 121: 679-686.
  • 130 Ueda K, Teragawa H, Kimura M. et al. Adrenomedullin causes coronary vasodilation in humans: effects of inhibition of nitric oxide synthesis. J Cardiovasc Pharmacol 2005; 46: 534-539.
  • 131 Temmesfeld-Wollbruck B, Brell B, David I. et al. Adrenomedullin reduces vascular hyperpermeability and improves survival in rat septic shock. Intensive Care Med 2007; 33: 703-710.
  • 132 Gonzalez-Rey E, Chorny A, Varela N. et al. Urocortin and adrenomedullin prevent lethal endotoxemia by down-regulating the inflammatory response. Am J Pathol 2006; 168: 1921-1930.
  • 133 Yang S, Zhou M, Chaudry IH. et al. Novel approach to prevent the transition from the hyperdynamic phase to the hypodynamic phase of sepsis: role of adrenomedullin and adrenomedullin binding protein-1. Ann Surg 2002; 236: 625-633.
  • 134 Yang S, Zhou M, Fowler DE. et al. Mechanisms of the beneficial effect of adrenomedullin and adrenomedullin- binding protein-1 in sepsis: down-regulation of proinflammatory cytokines. Crit Care Med 2002; 30: 2729-2735.
  • 135 Cui X, Wu R, Zhou M. et al. Adrenomedullin and its binding protein attenuate the proinflammatory response after hemorrhage. Crit Care Med 2005; 33: 391-398.
  • 136 Zhou M, Simms HH, Wang P. Adrenomedullin and adrenomedullin binding protein-1 attenuate vascular endothelial cell apoptosis in sepsis. Ann Surg 2004; 240: 321-330.
  • 137 Ono Y, Okano I, Kojima M. et al. Decreased gene expression of adrenomedullin receptor in mouse lungs during sepsis. Biochem Biophys Res Commun 2000; 271: 197-202.
  • 138 Koo DJ, Yoo P, Cioffi WG. et al. Mechanism of the beneficial effects of pentoxifylline during sepsis: maintenance of adrenomedullin responsiveness and downregulation of proinflammatory cytokines. J Surg Res 2000; 91: 70-76.
  • 139 Koo DJ, Zhou M, Chaudry IH. et al. The role of adrenomedullin in producing differential hemodynamic responses during sepsis. J Surg Res 2001; 95: 207-218.
  • 140 Wang P, Yoo P, Zhou M. et al. Reduction in vascular responsiveness to adrenomedullin during sepsis. J Surg Res 1999; 85: 59-65.
  • 141 Pio R, Elsasser TH, Martinez A. et al. Identification, characterization, and physiological actions of factor H as an adrenomedullin binding protein present in human plasma. Microsc Res Tech 2002; 57: 23-27.
  • 142 Pio R, Martinez A, Unsworth EJ. et al. Complement factor H is a serum-binding protein for adrenomedullin, and the resulting complex modulates the bioactivities of both partners. J Biol Chem 2001; 276: 12292-12300.
  • 143 Zhou M, Ba ZF, Chaudry IH. et al. Adrenomedullin binding protein-1 modulates vascular responsiveness to adrenomedullin in late sepsis. Am J Physiol Regul Integr Comp Physiol 2002; 283: R553-R560.
  • 144 Cui Y, Ji Y, Wu R. et al. Adrenomedullin binding protein-1 is downregulated during polymicrobial sepsis in the rat. Int J Mol Med 2006; 17: 925-929.
  • 145 Wu R, Cui X, Dong W. et al. Mechanisms responsible for vascular hyporesponsiveness to adrenomedullin after hemorrhage: the central role of adrenomedullin binding protein-1. Ann Surg 2005; 242: 115-123.
  • 146 Brain SD, Grant AD. Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol Rev 2004; 84: 903-934.
  • 147 Nakamura M, Yoshida H, Hiramori K. Comparison of vasodilator potency of adrenomedulling and proadrenomedullin N-terminal 20 peptide in human. Life Sci 1999; 65: 2151-2156.
  • 148 Eto T. A review of the biological properties and clinical implications of adrenomedullin and proadrenomedullin N-terminal 20 peptide (PAMP), hypotensive and vasodilating peptides. Peptides 2001; 22: 1693-1711.
  • 149 Hinson JP, Hagi-Pavli E, Thomson LM. et al. Proadrenomedullin N-terminal 20-peptide (PAMP) receptors and signal transduction in the rat adrenal gland. Life Sci 1998; 62: 439-443.
  • 150 Iwasaki H, Hirata Y, Iwashina M. et al. Specific binding sites for proadrenomedullin N-terminal 20 peptide (PAMP) in the rat. Endocrinology 1996; 137: 3045-3050.
  • 151 Li J, Ren Y, Dong X. et al. Roles of different peptide fragments derived from proadrenomedullin in the regulation of vascular tone in isolated rat aorta. Peptides 2003; 24: 563-568.