Thromb Haemost 2009; 102(05): 823-828
DOI: 10.1160/TH09-02-0091
Theme Issue Article
Schattauer GmbH

Heparin, heparan sulfate and heparanase in inflammatory reactions

Jin-ping Li
1   Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
,
Israel Vlodavsky
2   Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
› Author Affiliations
Financial support: Work of the authors of this review was supported by grants from the Swedish Research Council (32X-15023, 2007–5985; K2009–67X-21128–01–3); European Commission (EURAMY); Mizutani Foundation for Glycoscience; Polysackaridforskning AB (Uppsala, Sweden); The Israel Science Foundation (grant 549/06) and the National Cancer Institute, NIH (grant RO1-CA106456). I. Vlodavsky is a Research Professor of the Israel Cancer Research Fund.
Further Information

Publication History

Received: 11 February 2009

Accepted after minor revision: 17 May 2009

Publication Date:
27 November 2017 (online)

Summary

Heparan sulfate (HS) proteoglycans at the cell surface and in the extracellular matrix of most animal tissues are essential in development and homeostasis, and are implicated in disease processes. Emerging evidence demonstrates the important roles of HS in inflammatory reactions, particularly in the regulation of leukocyte extravasation. Heparin, a classical anticoagulant, exhibits anti-inflammatory effects in animal models and in the clinic,presumably through interference with the functions of HS, as both polysaccharides share a high similarity in molecular structure. Apart of regulation during biosynthesis, the structures of HS and heparin are significantly modulated by heparanase, an endoglycosidase that is upregulated in a number of inflammatory conditions. Exploring the physiological roles of HS and heparin and the mode of heparanase action in modulating their functions during inflammation responses is of importance for future studies.

 
  • References

  • 1 Horner AA. Macromolecular heparin from rat skin. Isolation, characterization, and depolymerization with ascorbate. J Biol Chem 1971; 246: 231-239.
  • 2 Bernfield M, Gotte M, Park PW. et al. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 1999; 68: 729-777.
  • 3 Fransson LA, Belting M, Cheng F. et al. Novel aspects of glypican glycobiology. Cell Mol Life Sci 2004; 61: 1016-10124.
  • 4 Cole GJ, Halfter W. Agrin: an extracellular matrix heparan sulfate proteoglycan involved in cell interactions and synaptogenesis. Perspect Dev Neurobiol 1996; 03: 359-371.
  • 5 Iozzo RV. Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 1998; 67: 609-652.
  • 6 Lindahl U. Biosynthesis of Heparin and related polysaccharides. In: Lane DA, Lindahl U. editors HEPARIN Chemical and Biological Properties, Clinical Applications. First ed. Edward Arnold; London: 1989: 159-189.
  • 7 Lindahl U. Biosynthesis of heparin. Biochem Soc Trans 1990; 18: 803-805.
  • 8 Ledin J, Staatz W, Li JP. et al. Heparan sulfate structure in mice with genetically modified heparan sulfate production. J Biol Chem 2004; 279: 42732-42741.
  • 9 Esko JD, Lindahl U. Molecular diversity of heparan sulfate. J Clin Invest 2001; Jul 108: 169-173.
  • 10 Kreuger J, Spillmann D, Li JP. et al. Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol 2006; Jul 31 174: 323-327.
  • 11 Lindahl U. Heparan sulfate-protein interactions--a concept for drug design?. Thromb Haemost 2007; 98: 109-115.
  • 12 Gray E, Mulloy B, Barrowcliffe TW. Heparin and low-molecular-weight heparin. Thromb Haemost 2008; 99: 807-818.
  • 13 Lindahl U, Backstrom G, Hook M. et al. Structure of the antithrombin-binding site in heparin. Proc Natl Acad Sci U S A 1979; 76: 3198-3202.
  • 14 Rosenberg RD, Lam L. Correlation between structure and function of heparin. Proc Natl Acad Sci U S A 1979; 76: 1218-1222.
  • 15 Lindahl U, Bäckström G, Thunberg L. et al. Evidence for a 3-O-sulfated D-glucosamine residue in the antithrombin-binding sequence of heparin. Proc Natl Acad Sci U S A 1980; 77: 6551-6555.
  • 16 Forsberg E, Pejler G, Ringvall M. et al. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 1999; 400: 773-776.
  • 17 Shin K, Nigrovic PA, Crish J. et al. Mast cells contribute to autoimmune inflammatory arthritis via their tryptase/heparin complexes. J Immunol 2009; 182: 647-656.
  • 18 Jorpes JE, Gardell S. On heparin monosulfuric acid. Journal of Biological Chemistry 1948; 176: 267-275.
  • 19 Lin X. Functions of heparan sulfate proteoglycans in cell signaling during development. Development 2004; 131: 6009-6021.
  • 20 Whitelock JM, Iozzo RV. Heparan sulfate: a complex polymer charged with biological activity. Chem Rev 2005; 105: 2745-2764.
  • 21 Skinner R, Abrahams JP, Whisstock JC. et al. The 2.6 A structure of antithrombin indicates a conformational change at the heparin binding site. J Mol Biol 1997; 266: 601-609.
  • 22 Hashimoto O, Nakamura T, Shoji H. et al. A novel role of follistatin, an activin-binding protein, in the inhibition of activin action in rat pituitary cells. Endocytotic degradation of activin and its acceleration by follistatin associated with cell-surface heparan sulfate. J Biol Chem 1997; 272: 13835-13842.
  • 23 Dowd CJ, Cooney CL, Nugent MA. Heparan sulfate mediates bFGF transport through basement membrane by diffusion with rapid reversible binding. J Biol Chem 1999; 274: 5236-5244.
  • 24 Gingis-Velitski S, Zetser A, Kaplan V. et al. Heparanase uptake is mediated by cell membrane heparan sulfate proteoglycans. J Biol Chem 2004; 279: 44084-44092.
  • 25 Lin X, Wei G, Shi Z. et al. Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev Biol 2000; 224: 299-311.
  • 26 Bullock SL, Fletcher JM, Beddington RS. et al. Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev 1998; 12: 1894-1906.
  • 27 Ringvall M, Ledin J, Holmborn K. et al. Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. J Biol Chem 2000; 275: 25926-25930.
  • 28 Li J-P, Gong F, Hagner-McWhirter Å. et al. Targeted disruption of a murine glucuronyl C5-epimerase gene results in heparan sulfate lacking L-iduronic acid and in neonatal lethality. J Biol Chem 2003; 278: 28363-28366.
  • 29 Pellegrini L. Role of heparan sulfate in fibroblast growth factor signalling: a structural view. Curr Opin Struct Biol 2001; 11: 629-634.
  • 30 Coombe DR, Kett WC. Heparan sulfate-protein interactions: therapeutic potential through structurefunction insights. Cell Mol Life Sci 2005; 62: 410-424.
  • 31 Jastrebova N, Vanwildemeersch M, Rapraeger AC. et al. Heparan sulfate-related oligosaccharides in ternary complex formation with fibroblast growth factors 1 and 2 and their receptors. J Biol Chem 2006; 281: 26884-26892.
  • 32 Ögren S, Lindahl U. Cleavage of macromolecular heparin by an enzyme from mouse mastocytoma. J Biol Chem 1975; 250: 2690-2697.
  • 33 Vlodavsky I, Friedmann Y, Elkin M. et al. Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat Med 1999; 05: 793-802.
  • 34 Hulett MD, Freeman C, Hamdorf BJ. et al. Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med 1999; 05: 803-809.
  • 35 Toyoshima M, Nakajima M. Human heparanase. Purification, characterization, cloning, and expression. J Biol Chem 1999; 274: 24153-24160.
  • 36 McKenzie E, Tyson K, Stamps A. et al. Cloning and expression profiling of Hpa2, a novel mammalian heparanase family member. Biochem Biophys Res Commun 2000; 276: 1170-1177.
  • 37 Zcharia E, Jia J, Zhang X. et al. Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases. PLoS ONE 2009; 04: e5181.
  • 38 Levy-Adam F, Miao HQ, Heinrikson RL. et al. Heterodimer formation is essential for heparanase enzymatic activity. Biochem Biophys Res Commun 2003; 308: 885-891.
  • 39 McKenzie E, Young K, Hircock M. et al. Biochemical characterization of the active heterodimer form of human heparanase (Hpa1) protein expressed in insect cells. Biochem J 2003; 373: 423-435.
  • 40 Nardella C, Lahm A, Pallaoro M. et al. Mechanism of activation of human heparanase investigated by protein engineering. Biochemistry 2004; 43: 1862-1873.
  • 41 Abboud-Jarrous G, Atzmon R, Peretz T. et al. Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. J Biol Chem 2008; 283: 18167-18176.
  • 42 de Mestre AM, Rao S, Hornby JR. et al. Early growth response gene 1 (EGR1) regulates heparanase gene transcription in tumor cells. J Biol Chem 2005; 280: 35136-35147.
  • 43 Baraz L, Haupt Y, Elkin M. et al. Tumor suppressor p53 regulates heparanase gene expression. Oncogene 2006; 25: 3939-3947.
  • 44 Chen G, Wang D, Vikramadithyan R. et al. Inflammatory cytokines and fatty acids regulate endothelial cell heparanase expression. Biochemistry 2004; 43: 4971-4977.
  • 45 Sandwall E, Bodevin S, Nasser NJ. et al. Molecular structure of heparan sulfate from spalax: Implications of heparanase and hypoxia. J Biol Chem 2008; 284: 3814-3822.
  • 46 Shafat I, Vlodavsky I, Ilan N. Characterization of mechanisms involved in secretion of active heparanase. J Biol Chem 2006; 281: 23804-23811.
  • 47 Ilan N, Elkin M, Vlodavsky I. Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 2006; 38: 2018-2039.
  • 48 Dempsey LA, Brunn GJ, Platt JL. Heparanase, a potential regulator of cell-matrix interactions. Trends Biochem Sci 2000; 25: 349-351.
  • 49 Zcharia E, Metzger S, Chajek-Shaul T. et al. Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. Faseb J 2004; 18: 252-263.
  • 50 Zcharia E, Zilka R, Yaar A. et al. Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models. FASEB J 2005; 19: 211-221.
  • 51 Zcharia E, Philp D, Edovitsky E. et al. Heparanase regulates murine hair growth. Am J Pathol 2005; 166: 999-1008.
  • 52 Spiegel A, Zcharia E, Vagima Y. et al. Heparanase regulates retention and proliferation of primitive Sca1+/c-Kit+/Lin-cells via modulation of the bone marrow microenvironment. Blood 2008; 111: 4934-4943.
  • 53 Li JP, Galvis ML, Gong F. et al. In vivo fragmentation of heparan sulfate by heparanase overexpression renders mice resistant to amyloid protein A amyloidosis. Proc Natl Acad Sci U S A 2005; 102: 6473-6477.
  • 54 Wang L, Brown JR, Varki A. et al. Heparin’s anti-inflammatory effects require glucosamine 6-O-sulfation and are mediated by blockade of L-and P-selectins. J Clin Invest 2002; 110: 127-136.
  • 55 Butcher EC. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 1991; 67: 1033-1036.
  • 56 Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76: 301-314.
  • 57 Schenkel AR, Mamdouh Z, Muller WA. Locomotion of monocytes on endothelium is a critical step during extravasation. Nat Immunol 2004; 05: 393-400.
  • 58 Stringer SE, Nelson MS, Gupta P. Identification of an MIP-1alpha -binding heparan sulfate oligosaccharide that supports long-term in vitro maintenance of human LTC-ICs. Blood 2003; 101: 2243-2245.
  • 59 Vives RR, Sadir R, Imberty A. et al. A kinetics and modeling study of RANTES(9-68) binding to heparin reveals a mechanism of cooperative oligomerization. Biochemistry 2002; 41: 14779-14789.
  • 60 Najjam S, Mulloy B, Theze J. et al. Further characterization of the binding of human recombinant interleukin 2 to heparin and identification of putative binding sites. Glycobiology 1998; 08: 509-516.
  • 61 Spillmann D, Witt D, Lindahl U. Defining the Interleukin-8-binding Domain of Heparan Sulfate. J Biol Chem 1998; 273: 15487-15493.
  • 62 Salek-Ardakani S, Arrand JR, Shaw D. et al. Heparin and heparan sulfate bind interleukin-10 and modulate its activity. Blood 2000; 96: 1879-1888.
  • 63 Norgard-Sumnicht K, Varki A. Endothelial heparan sulfate proteoglycans that bind to L-selectin have glucosamine residues with unsubstituted amino groups. J Biol Chem 1995; 270: 12012-12024.
  • 64 Luo J, Kato M, Wang H. et al. Heparan sulfate and chondroitin sulfate proteoglycans inhibit E-selectin binding to endothelial cells. J Cell Biochem 2001; 80: 522-531.
  • 65 Tanaka Y, Kimata K, Wake A. et al. Heparan sulfate proteoglycan on leukemic cells is primarily involved in integrin triggering and its mediated adhesion to endothelial cells. J Exp Med 1996; 184: 1987-1997.
  • 66 Witt DP, Lander AD. Differential binding of chemokines to glycosaminoglycan subpopulations. Curr Biol 1994; 04: 394-400.
  • 67 Axelsson J, Norrman G, Malmstrom A. et al. Initiation of acute pancreatitis by heparan sulphate in the rat. Scand J Gastroenterol 2008; 43: 480-489.
  • 68 Wang L, Fuster M, Sriramarao P. et al. Endothelial heparan sulfate deficiency impairs L-selectin-and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol 2005; 06: 902-910.
  • 69 Rashid RM, Lee JM, Fareed J. et al. In vitro heparan sulfate modulates the immune responses of normal and tumor-bearing mice. Immunol Invest 2007; 36: 183-201.
  • 70 Tyrrell DJ, Horne AP, Holme KR. et al. Heparin in inflammation: potential therapeutic applications beyond anticoagulation. Adv Pharmacol 1999; 46: 151-208.
  • 71 Davidson BL, Geerts WH, Lensing AW. Low-dose heparin for severe sepsis. N Engl J Med 2002; 347: 1036-1037.
  • 72 Day R, Forbes A. Heparin, cell adhesion, and pathogenesis of inflammatory bowel disease. Lancet 1999; 354: 62-65.
  • 73 Hoppensteadt D, Fareed J, Klein AL. et al. Comparison of anticoagulant and anti-inflammatory responses using enoxaparin versus unfractionated heparin for transesophageal echocardiography-guided cardioversion of atrial fibrillation. Am J Cardiol 2008; 102: 842-846.
  • 74 Ahmed T, Garrigo J, Danta I. Preventing bronchoconstriction in exercise-induced asthma with inhaled heparin. N Engl J Med 1993; 329: 90-95.
  • 75 Torkvist L, Thorlacius H, Sjoqvist U. et al. Low molecular weight heparin as adjuvant therapy in active ulcerative colitis. Aliment Pharmacol Ther 1999; 13: 1323-1328.
  • 76 Saliba Jr. MJ. Heparin in the treatment of burns: a review. Burns 2001; 27: 349-358.
  • 77 Edovitsky E, Lerner I, Zcharia E. et al. Role of endothelial heparanase in delayed-type hypersensitivity. Blood 2006; 107: 3609-3616.
  • 78 Waterman M, Ben-Izhak O, Eliakim R. et al. Heparanase upregulation by colonic epithelium in inflammatory bowel disease. Mod Pathol 2007; 20: 8-14.
  • 79 Yang Y, Macleod V, Miao HQ. et al. Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis. J Biol Chem 2007; 282: 13326-13333.
  • 80 Li RW, Freeman C, Yu D. et al. Dramatic regulation of heparanase activity and angiogenesis gene expression in synovium from patients with rheumatoid arthritis. Arthritis Rheum 2008; 58: 1590-1600.
  • 81 Gong F, Jemth P, Escobar MLGalvis. et al. Processing of macromolecular heparin by heparanase. J Biol Chem 2003; 278: 35152-35158.
  • 82 Pikas DS, Li JP, Vlodavsky I. et al. Substrate specificity of heparanases from human hepatoma and platelets. J Biol Chem 1998; 273: 18770-18777.
  • 83 Escobar MLGalvis, Jia J, Zhang X. et al. Transgenic or tumor-induced expression of heparanase upregulates sulfation of heparan sulfate. Nat Chem Biol 2007; 03: 773-778.
  • 84 Parish CR. Heparan sulfate and inflammation. Nat Immunol 2005; 06: 861-862.