Thromb Haemost 2010; 103(01): 40-55
DOI: 10.1160/TH09-06-0403
Review Article
Schattauer GmbH

Driving Rho GTPase activity in endothelial cells regulates barrier integrity

Cora M. L. Beckers
1   Department for Physiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, the Netherlands
,
Victor W. M. van Hinsbergh
1   Department for Physiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, the Netherlands
,
Geerten P. van Nieuw Amerongen
1   Department for Physiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, the Netherlands
› Author Affiliations
Financial support: G.P.v.N.A. is supported by The Netherlands Heart Foundation (The Hague, grant 2003T032). Our laboratory was supported by the EU (EVGN contract LSHM-2003–503254).
Further Information

Publication History

Received: 25 June 2009

Accepted after minor revision: 30 September 2009

Publication Date:
22 November 2017 (online)

Summary

In the past decade understanding of the role of the Rho GTPases RhoA, Rac1 and Cdc42 has been developed from regulatory proteins that regulate specific actin cytoskeletal structures – stress fibers, lamellipodia and filopodia – to complex integrators of cytoskeletal structures that can exert multiple functions depending on the cellular context. Fundamental to these functions are three-dimensional complexes between the individual Rho GTPases, their specific activators (GEFs) and inhibitors (GDIs and GAPs), which greatly outnumber the Rho GTPases themselves, and additional regulatory proteins. By this complexity of regulation different vasoactive mediators can induce various cytoskeletal structures that enable the endothelial cell (EC) to respond adequately. In this review we have focused on this complexity and the consequences of Rho GTPase regulation for endothelial barrier function. The permeability inducers thrombin and VEGF are presented as examples of G-protein coupled receptor- and tyrosine kinase receptormediated Rho GTPase activation, respectively. These mediators induce complex but markedly different networks of activators, inhibitors and effectors of Rho GTPases, which alter the endothelial barrier function. An interesting feature in this regulation is that Rho GTPases often have both barrier-protecting and barrier-disturbing functions. While Rac1 enforces the endothelial junctions, it becomes part of a barrier-disturbing mechanism as activator of reactive oxygen species generating NADPH oxidase. Similarly RhoA is protective under basal conditions, but becomes involved in barrier dysfunction after activation of ECs by thrombin. The challenge and promise lies in unfolding this complex regulation, as this will provide leads for new therapeutic opportunities.

 
  • References

  • 1 Aepfelbacher M, Essler M, Huber E. et al. Bacterial toxins block endothelial wound repair. Evidence that Rho GTPases control cytoskeletal rearrangements in migrating endothelial cells. Arterioscler Thromb Vasc Biol 1997; 17: 1623-1629.
  • 2 Wojciak-Stothard B, Entwistle A, Garg R. et al. Regulation of TNF-alpha-induced reorganization of the actin cytoskeleton and cell-cell junctions by Rho, Rac, and Cdc42 in human endothelial cells. J Cell Physiol 1998; 176: 150-165.
  • 3 Uehata M, Ishizaki T, Satoh H. et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 1997; 389: 990-994.
  • 4 van Nieuw Amerongen GP, van Hinsbergh VW. Cytoskeletal effects of rho-like small guanine nucleotide-binding proteins in the vascular system. Arterioscler Thromb Vasc Biol 2001; 21: 300-311.
  • 5 Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002; 420: 629-635.
  • 6 De Smet F, Segura I, De Bock K. et al. Mechanisms of vessel branching: filopodia on endothelial tip cells lead the way. Arterioscler Thromb Vasc Biol 2009; 29: 639-649.
  • 7 Ridley AJ. Rho family proteins: coordinating cell responses. Trends Cell Biol 2001; 11: 471-477.
  • 8 Aspenstrom P, Ruusala A, Pacholsky D. Taking Rho GTPases to the next level: the cellular functions of atypical Rho GTPases. Exp Cell Res 2007; 313: 3673-3679.
  • 9 Aghajanian A, Wittchen ES, Allingham MJ. et al. Endothelial cell junctions and the regulation of vascular permeability and leukocyte transmigration. J Thromb Haemost 2008; 06: 1453-1460.
  • 10 Lampugnani MG, Zanetti A, Breviario F. et al. VE-cadherin regulates endothelial actin activating Rac and increasing membrane association of Tiam. Mol Biol Cell 2002; 13: 1175-1189.
  • 11 Vandenbroucke E, Mehta D, Minshall R. et al. Regulation of endothelial junctional permeability. Ann NY Acad Sci 2008; 1123: 134-145.
  • 12 Wojciak-Stothard B, Ridley AJ. Rho GTPases and the regulation of endothelial permeability. Vascul Pharmacol 2002; 39: 187-199.
  • 13 van Nieuw Amerongen GP, Beckers CM, Achekar ID. et al. Involvement of Rho kinase in endothelial barrier maintenance. Arterioscler Thromb Vasc Biol 2007; 27: 2332-2339.
  • 14 Gavard J, Patel V, Gutkind JS. Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev Cell 2008; 14: 25-36.
  • 15 Baumer Y, Drenckhahn D, Waschke J. cAMP induced Rac 1-mediated cytoskeletal reorganization in microvascular endothelium. Histochem Cell Biol 2008; 129: 765-778.
  • 16 Garcia JG, Liu F, Verin AD. et al. Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J Clin Invest 2001; 108: 689-701.
  • 17 Tauseef M, Kini V, Knezevic N. et al D. Activation of sphingosine kinase-1 reverses the increase in lung vascular permeability through sphingosine-1-phosphate receptor signalling in endothelial cells. Circ Res 2008; 103: 1164-1172.
  • 18 Temmesfeld-Wollbruck B, Hocke AC, Suttorp N. et al. Adrenomedullin and endothelial barrier function. Thromb Haemost 2007; 98: 944-951.
  • 19 Zeng H, Zhao D, Mukhopadhyay D. KDR stimulates endothelial cell migration through heterotrimeric G protein Gq/11-mediated activation of a small GTPase RhoA. J Biol Chem 2002; 277: 46791-46798.
  • 20 Broman MT, Mehta D, Malik AB. Cdc42 regulates the restoration of endothelial adherens junctions and permeability. Trends Cardiovasc Med 2007; 17: 151-156.
  • 21 van Nieuw Amerongen GP, van Delft S, Vermeer MA. et al. Activation of RhoA by thrombin in endothelial hyperpermeability: role of Rho kinase and protein tyro-sine kinases. Circ Res 2000; 87: 335-340.
  • 22 van Nieuw Amerongen GP, Koolwijk P, Versteilen A. et al. Involvement of RhoA/ Rho kinase signalling in VEGF-induced endothelial cell migration and angiogenesis in vitro. Arterioscler Thromb Vasc Biol 2003; 23: 211-217.
  • 23 Garrett TA, Van Buul JD, Burridge K. VEGF-induced Rac1 activation in endothelial cells is regulated by the guanine nucleotide exchange factor Vav2. Exp Cell Res 2007; 313: 3285-3297.
  • 24 Rosenfeldt H, Castellone MD, Randazzo PA. et al. Rac inhibits thrombin-induced Rho activation: evidence of a Pak-dependent GTPase crosstalk. J Mol Signal 2006; 01: 8.
  • 25 Mehta D, Malik AB. Signalling mechanisms regulating endothelial permeability. Physiol Rev 2006; 86: 279-367.
  • 26 Monaghan-Benson E, Burridge K. The regulation of VEGF-induced microvascular permeability requires Rac and ROS. J Biol Chem 2009; 284: 25602-25611.
  • 27 Nimnual AS, Taylor LJ, Bar-Sagi D. Redox-dependent downregulation of Rho by Rac. Nat Cell Biol 2003; 05: 236-241.
  • 28 Rousseau S, Houle F, Huot J. Integrating the VEGF signals leading to actin-based motility in vascular endothelial cells. Trends Cardiovasc Med 2000; 10: 321-327.
  • 29 Siderovski DP, Willard FS. The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. Int J Biol Sci 2005; 01: 51-66.
  • 30 Rossman KL, Der CJ, Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 2005; 06: 167-180.
  • 31 Erickson JW, Cerione RA. Structural elements, mechanism, and evolutionary convergence of Rho protein-guanine nucleotide exchange factor complexes. Biochemistry 2004; 43: 837-842.
  • 32 Cerione RA, Zheng Y. The Dbl family of oncogenes. Curr Opin Cell Biol 1996; 08: 216-222.
  • 33 Schmidt A, Hall A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev 2002; 16: 1587-1609.
  • 34 Hart MJ, Jiang X, Kozasa T. et al. Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science 1998; 280: 2112-2114.
  • 35 Kozasa T, Jiang X, Hart MJ. et al. p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science 1998; 280: 2109-2111.
  • 36 Longenecker KL, Lewis ME, Chikumi H. et al. Structure of the RGS-like domain from PDZ-RhoGEF: linking heterotrimeric g protein-coupled signalling to Rho GTPases. Structure 2001; 09: 559-569.
  • 37 Sanz-Moreno V, Gadea G, Ahn J. et al. Rac activation and inactivation control plasticity of tumor cell movement. Cell 2008; 135: 510-523.
  • 38 Lents NH, Irintcheva V, Goel R. et al. The rapid activation of N-Ras by alpha-thrombin in fibroblasts is mediated by the specific G-protein Galpha(i2)-Gbeta(1)-Ggamma(5) and occurs in lipid rafts. Cell Signal 2009; 21: 1007-1014.
  • 39 Cote JF, Vuori K. Identification of an evolutionarily conserved superfamily of DOCK180-related proteins with guanine nucleotide exchange activity. J Cell Sci 2002; 115: 4901-4913.
  • 40 Cote JF, Vuori K. GEF what? Dock180 and related proteins help Rac to polarize cells in new ways. Trends Cell Biol 2007; 17: 383-393.
  • 41 Fukui Y, Hashimoto O, Sanui T. et al. Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature 2001; 412: 826-831.
  • 42 Siehler S. Regulation of RhoGEF proteins by G(12/13)-coupled receptors. Br J Pharmacol 2009; 158: 41-49.
  • 43 Chikumi H, Fukuhara S, Gutkind JS. Regulation of G protein-linked guanine nucleotide exchange factors for Rho, PDZ-RhoGEF, and LARG by tyrosine phosphorylation: evidence of a role for focal adhesion kinase. J Biol Chem 2002; 277: 12463-12473.
  • 44 Schiller MR. Coupling receptor tyrosine kinases to Rho GTPases--GEFs what’s the link. Cell Signal 2006; 18: 1834-1843.
  • 45 Schmidt A, Hall A. The Rho exchange factor Net1 is regulated by nuclear sequestration. J Biol Chem 2002; 277: 14581-14588.
  • 46 Tatsumoto T, Xie X, Blumenthal R. et al. Human ECT2 is an exchange factor for Rho GTPases, phosphorylated in G2/M phases, and involved in cytokinesis. J Cell Biol 1999; 147: 921-928.
  • 47 Michiels F, Stam JC, Hordijk PL. et al. Regulated membrane localization of Tiam1, mediated by the NH2-terminal pleckstrin homology domain, is required for Rac-dependent membrane ruffling and C-Jun NH2-terminal kinase activation. J Cell Biol 1997; 137: 387-398.
  • 48 Krendel M, Zenke FT, Bokoch GM. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol 2002; 04: 294-301.
  • 49 Birukova AA, Adyshev D, Gorshkov B. et al. GEF-H1 is involved in agonist-induced human pulmonary endothelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2006; 290: L540-L548.
  • 50 Callow MG, Zozulya S, Gishizky ML. et al. PAK4 mediates morphological changes through the regulation of GEF-H1. J Cell Sci 2005; 118: 1861-1872.
  • 51 Ohta Y, Hartwig JH, Stossel TP. FilGAP, a Rho- and ROCK-regulated GAP for Rac binds filamin A to control actin remodelling. Nat Cell Biol 2006; 08: 803-814.
  • 52 Su ZJ, Hahn CN, Goodall GJ. et al. A vascular cell-restricted RhoGAP, p73RhoGAP, is a key regulator of angiogenesis. Proc Natl Acad Sci USA 2004; 101: 12212-12217.
  • 53 Tcherkezian J, Lamarche-Vane N. Current knowledge of the large RhoGAP family of proteins. Biol Cell 2007; 99: 67-86.
  • 54 Buchsbaum RJ. Rho activation at a glance. J Cell Sci 2007; 120: 1149-1152.
  • 55 Dovas A, Couchman JR. RhoGDI: multiple functions in the regulation of Rho family GTPase activities. Biochem J 2005; 390: 1-9.
  • 56 Olofsson B. Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal 1999; 11: 545-554.
  • 57 Fu P, Birukov KG. Oxidized phospholipids in control of inflammation and endothelial barrier. Transl Res 2009; 153: 166-176.
  • 58 Wildenberg GA, Dohn MR, Carnahan RH. et al. p120-catenin and p190RhoGAP regulate cell-cell adhesion by coordinating antagonism between Rac and Rho. Cell 2006; 127: 1027-1039.
  • 59 Braga VM, Machesky LM, Hall A. et al. The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J Cell Biol 1997; 137: 1421-1431.
  • 60 Noren NK, Niessen CM, Gumbiner BM. et al. Cadherin engagement regulates Rho family GTPases. J Biol Chem 2001; 276: 33305-33308.
  • 61 Yamada S, Nelson WJ. Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell-cell adhesion. J Cell Biol 2007; 178: 517-527.
  • 62 Tan W, Palmby TR, Gavard J. et al. An essential role for Rac1 in endothelial cell function and vascular development. FASEB J 2008; 22: 1829-1838.
  • 63 Patterson C. Torturing a blood vessel. Nat Med 2009; 15: 137-138.
  • 64 Kleaveland B, Zheng X, Liu JJ. et al. Regulation of cardiovascular development and integrity by the heart of glass-cerebral cavernous malformation protein pathway. Nat Med 2009; 15: 169-176.
  • 65 Whitehead KJ, Chan AC, Navankasattusas S. et al. The cerebral cavernous malformation signalling pathway promotes vascular integrity via Rho GTPases. Nat Med 2009; 15: 177-184.
  • 66 Crose LE, Hilder TL, Sciaky N. et al. Cerebral cavernous malformation 2 protein promotes smad ubiquitin regulatory factor 1-mediated RhoA degradation in endothelial cells. J Biol Chem 2009; 284: 13301-13305.
  • 67 Ozdamar B, Bose R, Barrios-Rodiles M. et al. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 2005; 307: 1603-1609.
  • 68 Chauvet N, Prieto M, Fabre C. et al. Distribution of p120 catenin during rat brain development: potential role in regulation of cadherin-mediated adhesion and actin cytoskeleton organization. Mol Cell Neurosci 2003; 22: 467-486.
  • 69 Noren NK, Liu BP, Burridge K. et al. p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J Cell Biol 2000; 150: 567-580.
  • 70 Brill S, Li S, Lyman CW. et al. The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and Rho family GTPases. Mol Cell Biol 1996; 16: 4869-4878.
  • 71 Ho YD, Joyal JL, Li Z. et al. IQGAP1 integrates Ca2+/calmodulin and Cdc42 signalling. J Biol Chem 1999; 274: 464-470.
  • 72 Hart MJ, Callow MG, Souza B. et al. IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs. EMBO J 1996; 15: 2997-3005.
  • 73 Bashour AM, Fullerton AT, Hart MJ. et al. IQGAP1, a Rac- and Cdc42-binding protein, directly binds and cross-links microfilaments. J Cell Biol 1997; 137: 1555-1566.
  • 74 Fukata M, Nakagawa M, Itoh N. et al. Involvement of IQGAP1, an effector of Rac1 and Cdc42 GTPases, in cell-cell dissociation during cell scattering. Mol Cell Biol 2001; 21: 2165-2183.
  • 75 Fukata M, Nakagawa M, Kuroda S. et al. Cell adhesion and Rho small GTPases. J Cell Sci 1999; 112: 4491-4500.
  • 76 Wells CD, Fawcett JP, Traweger A. et al. A Rich1/Amot complex regulates the Cdc42 GTPase and apical-polarity proteins in epithelial cells. Cell 2006; 125: 535-548.
  • 77 Braga VM. Cell-cell adhesion and signalling. Curr Opin Cell Biol 2002; 14: 546-556.
  • 78 Reynolds AB, Herbert L, Cleveland JL. et al. p120, a novel substrate of protein tyrosine kinase receptors and of p60v-src, is related to cadherin-binding factors beta-catenin, plakoglobin and armadillo. Oncogene 1992; 07: 2439-2445.
  • 79 Sousa S, Cabanes D, Archambaud C. et al. ARHGAP10 is necessary for alpha-catenin recruitment at adherens junctions and for Listeria invasion. Nat Cell Biol 2005; 07: 954-960.
  • 80 Birukova AA, Zagranichnaya T, Alekseeva E. et al. Epac/Rap and PKA are novel mechanisms of ANP-induced Rac-mediated pulmonary endothelial barrier protection. J Cell Physiol 2008; 215: 715-724.
  • 81 Herbrand U, Ahmadian MR. p190-RhoGAP as an integral component of the Tiam1/Rac1-induced downregulation of Rho. Biol Chem 2006; 387: 311-317.
  • 82 Qiao J, Holian O, Lee BS. et al. Phosphorylation of GTP dissociation inhibitor by PKA negatively regulates RhoA. Am J Physiol Cell Physiol 2008; 295: C1161-C1168.
  • 83 Sakurai A, Fukuhara S, Yamagishi A. et al. MAGI-1 is required for Rap1 activation upon cell-cell contact and for enhancement of vascular endothelial cadherin-mediated cell adhesion. Mol Biol Cell 2006; 17: 966-976.
  • 84 Asuri S, Yan J, Paranavitana NC. et al. E-cadherin dis-engagement activates the Rap1 GTPase. J Cell Biochem 2008; 105: 1027-1037.
  • 85 Kobielak A, Fuchs E. Alpha-catenin: at the junction of intercellular adhesion and actin dynamics. Nat Rev Mol Cell Biol 2004; 05: 614-625.
  • 86 Wong KW, Mohammadi S, Isberg RR. Disruption of RhoGDI and RhoA regulation by a Rac1 specificity switch mutant. J Biol Chem 2006; 281: 40379-40388.
  • 87 Klarenbach SW, Chipiuk A, Nelson RC. et al. Differential actions of PAR2 and PAR1 in stimulating human endothelial cell exocytosis and permeability: the role of Rho-GTPases. Circ Res 2003; 92: 272-278.
  • 88 McLaughlin JN, Shen L, Holinstat M. et al. Functional selectivity of G protein signalling by agonist peptides and thrombin for the protease-activated receptor-1. J Biol Chem 2005; 280: 25048-25059.
  • 89 Vogt S, Grosse R, Schultz G. et al. Receptor-dependent RhoA activation in G12/G13-deficient cells: genetic evidence for an involvement of Gq/G11. J Biol Chem 2003; 278: 28743-28749.
  • 90 Hung DT, Wong YH, Vu TK. et al. The cloned platelet thrombin receptor couples to at least two distinct effectors to stimulate phosphoinositide hydrolysis and inhibit adenylyl cyclase. J Biol Chem 1992; 267: 20831-20834.
  • 91 Holinstat M, Mehta D, Kozasa T. et al. Protein kinase Calpha-induced p115RhoGEF phosphorylation signals endothelial cytoskeletal rearrangement. J Biol Chem 2003; 278: 28793-28798.
  • 92 Gavard J, Gutkind JS. Protein kinase C-related kinase and ROCK are required for thrombin-induced endothelial cell permeability downstream from Galpha12/13 and Galpha11/q. J Biol Chem 2008; 283: 29888-29896.
  • 93 Kouklis P, Konstantoulaki M, Vogel S. et al. Cdc42 regulates the restoration of endothelial barrier function. Circ Res 2004; 94: 159-166.
  • 94 Garcia JG, Lazar V, Gilbert-McClain LI. et al. Myosin light chain kinase in endothelium: molecular cloning and regulation. Am J Respir Cell Mol Biol 1997; 16: 489-494.
  • 95 Goeckeler ZM, Wysolmerski RB. Myosin phosphatase and cofilin mediate cAMP/ cAMP-dependent protein kinase-induced decline in endothelial cell isometric tension and myosin II regulatory light chain phosphorylation. J Biol Chem 2005; 280: 33083-33095.
  • 96 Kimura K, Ito M, Amano M. et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 1996; 273: 245-248.
  • 97 Satpathy M, Gallagher P, Lizotte-Waniewski M. et al. Thrombin-induced phosphorylation of the regulatory light chain of myosin II in cultured bovine corneal endothelial cells. Exp Eye Res 2004; 79: 477-486.
  • 98 van Nieuw Amerongen GP, Draijer R, Vermeer MA. et al. Transient and prolonged increase in endothelial permeability induced by histamine and thrombin: role of protein kinases, calcium, and RhoA. Circ Res 1998; 83: 1115-1123.
  • 99 Singh I, Knezevic N, Ahmmed GU. et al. Galphaq-TRPC6-mediated Ca2+ entry induces RhoA activation and resultant endothelial cell shape change in response to thrombin. J Biol Chem 2007; 282: 7833-7843.
  • 100 Knezevic N, Roy A, Timblin B. et al. GDI-1 phosphorylation switch at serine 96 induces RhoA activation and increased endothelial permeability. Mol Cell Biol 2007; 27: 6323-6333.
  • 101 Mehta D, Rahman A, Malik AB. Protein kinase C-alpha signals rho-guanine nucleotide dissociation inhibitor phosphorylation and rho activation and regulates the endothelial cell barrier function. J Biol Chem 2001; 276: 22614-22620.
  • 102 Birukova AA, Smurova K, Birukov KG. et al. Role of Rho GTPases in thrombin-induced lung vascular endothelial cells barrier dysfunction. Microvasc Res 2004; 67: 64-77.
  • 103 Kawano Y, Fukata Y, Oshiro N. et al. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J Cell Biol 1999; 147: 1023-1038.
  • 104 Essler M, Amano M, Kruse HJ. et al. Thrombin inactivates myosin light chain phosphatase via Rho and its target Rho kinase in human endothelial cells. J Biol Chem 1998; 273: 21867-21874.
  • 105 Amano M, Ito M, Kimura K. et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 1996; 271: 20246-20249.
  • 106 Riento K, Ridley AJ. Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 2003; 04: 446-456.
  • 107 Mori K, Amano M, Takefuji M. et al. Rho-kinase contributes to sustained RhoA activation through phosphorylation of p190A RhoGAP. J Biol Chem 2008; 284: 5067-5076.
  • 108 Holinstat M, Knezevic N, Broman M. et al. Suppression of RhoA activity by focal adhesion kinase-induced activation of p190RhoGAP: role in regulation of endothelial permeability. J Biol Chem 2006; 281: 2296-2305.
  • 109 Settleman J, Albright CF, Foster LC. et al. Association between GTPase activators for Rho and Ras families. Nature 1992; 359: 153-154.
  • 110 Ridley AJ, Self AJ, Kasmi F. et al. rho family GTPase activating proteins p190, bcr and rhoGAP show distinct specificities in vitro and in vivo. EMBO J 1993; 12: 5151-5160.
  • 111 Suzuki N, Hajicek N, Kozasa T. Regulation and physiological functions of G12/13-mediated signalling pathways. Neurosignals 2009; 17: 55-70.
  • 112 Kanthou C, Kanse SM, Kakkar VV. et al. Involvement of pertussis toxin-sensitive and -insensitive G proteins in alpha-thrombin signalling on cultured human vascular smooth muscle cells. Cell Signal 1996; 08: 59-66.
  • 113 Westendorp RG, Draijer R, Meinders AE. et al. Cyclic-GMP-mediated decrease in permeability of human umbilical and pulmonary artery endothelial cell mono-layers. J Vasc Res 1994; 31: 42-51.
  • 114 Heller R, Chang Q, Ehrlich G. et al. Overlapping and distinct roles for PI3Kbeta and gamma isoforms in S1P-induced migration of human and mouse endothelial cells. Cardiovasc Res 2008; 80: 96-105.
  • 115 Diebold I, Djordjevic T, Petry A. et al. Phosphodiesterase 2 Mediates Redox-Sensitive Endothelial Cell Proliferation and Angiogenesis by Thrombin via Rac1 and NADPH Oxidase 2. Circ Res 2009; 104: 1169-1177.
  • 116 Vouret-Craviari V, Bourcier C, Boulter E. et al. Distinct signals via Rho GTPases and Src drive shape changes by thrombin and sphingosine-1-phosphate in endothelial cells. J Cell Sci 2002; 115: 2475-2484.
  • 117 Wojciak-Stothard B, Potempa S, Eichholtz T. et al. Rho and Rac but not Cdc42 regulate endothelial cell permeability. J Cell Sci 2001; 114: 1343-1355.
  • 118 Luna A, Matas OB, Martinez-Menarguez JA. et al. Regulation of protein transport from the Golgi complex to the endoplasmic reticulum by CDC42 and N-WASP. Mol Biol Cell 2002; 13: 866-879.
  • 119 Erickson JW, Zhang C, Kahn RA. et al. Mammalian Cdc42 is a brefeldin A-sensitive component of the Golgi apparatus. J Biol Chem 1996; 271: 26850-26854.
  • 120 Nakamura T, Hayashi T, Nasu-Nishimura Y. et al. PX-RICS mediates ER-toGolgi transport of the N-cadherin/beta-catenin complex. Genes Dev 2008; 22: 1244-1256.
  • 121 Wang B, Wylie FG, Teasdale RD. et al. Polarized trafficking of E-cadherin is regulated by Rac1 and Cdc42 in Madin-Darby canine kidney cells. Am J Physiol Cell Physiol 2005; 288: C1411-C1419.
  • 122 Vogel SM, Gao X, Mehta D. et al. Abrogation of thrombin-induced increase in pulmonary microvascular permeability in PAR-1 knockout mice. Physiol Genomics 2000; 04: 137-145.
  • 123 Garcia JG, Pavalko FM, Patterson CE. Vascular endothelial cell activation and permeability responses to thrombin. Blood Coagul Fibrinolysis 1995; 06: 609-626.
  • 124 Andriopoulou P, Navarro P, Zanetti A. et al. Histamine induces tyrosine phosphorylation of endothelial cell-to-cell adherens junctions. Arterioscler Thromb Vasc Biol 1999; 19: 2286-2297.
  • 125 McLachlan RW, Yap AS. Not so simple: the complexity of phosphotyrosine signalling at cadherin adhesive contacts. J Mol Med 2007; 85: 545-554.
  • 126 Majno G, Gilmore V, Leventhal M. On the mechanism of vascular leakage caused by histaminetype mediators. A microscopic study in vivo. Circ Res 1967; 21: 833-847.
  • 127 van Nieuw Amerongen GP, Musters RJ, Eringa EC. et al. Thrombin-induced endothelial barrier disruption in intact microvessels: role of RhoA/Rho kinasemyosin phosphatase axis. Am J Physiol Cell Physiol 2008; 294: C1234-C1241.
  • 128 Baluk P, Hirata A, Thurston G. et al. Endothelial gaps: time course of formation and closure in inflamed venules of rats. Am J Physiol 1997; 272: L155-L170.
  • 129 Kaneider NC, Leger AJ, Agarwal A. et al. ‘Role reversal’ for the receptor PAR1 in sepsis-induced vascular damage. Nat Immunol 2007; 08: 1303-1312.
  • 130 Schuepbach RA, Feistritzer C, Fernandez JA. et al. Protection of vascular barrier integrity by activated protein C in murine models depends on protease-activated receptor-1. Thromb Haemost 2009; 101: 724-733.
  • 131 Bae JS, Rezaie AR. Protease activated receptor 1 (PAR-1) activation by thrombin is protective in human pulmonary artery endothelial cells if endothelial protein C receptor is occupied by its natural ligand. Thromb Haemost 2008; 100: 101-109.
  • 132 Hofer E, Schweighofer B. Signal transduction induced in endothelial cells by growth factor receptors involved in angiogenesis. Thromb Haemost 2007; 97: 355-363.
  • 133 Olsson AK, Dimberg A, Kreuger J. et al. VEGF receptor signalling – in control of vascular function. Nat Rev Mol Cell Biol 2006; 07: 359-371.
  • 134 Carmeliet P, Lampugnani MG, Moons L. et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 1999; 98: 147-157.
  • 135 Yamaoka-Tojo M, Tojo T, Kim HW. et al. IQGAP1 mediates VE-cadherin-based cell-cell contacts and VEGF signalling at adherence junctions linked to angio-genesis. Arterioscler Thromb Vasc Biol 2006; 26: 1991-1997.
  • 136 Weis S, Cui J, Barnes L. et al. Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol 2004; 167: 223-229.
  • 137 Soldi R, Mitola S, Strasly M. et al. Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J 1999; 18: 882-892.
  • 138 Takahashi T, Yamaguchi S, Chida K. et al. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 2001; 20: 2768-2778.
  • 139 Meyer RD, Dayanir V, Majnoun F. et al. The presence of a single tyrosine residue at the carboxyl domain of vascular endothelial growth factor receptor-2/FLK-1 regulates its autophosphorylation and activation of signalling molecules. J Biol Chem 2002; 277: 27081-27087.
  • 140 Eriksson A, Cao R, Roy J. et al. Small GTP-binding protein Rac is an essential mediator of vascular endothelial growth factor-induced endothelial fenestrations and vascular permeability. Circulation 2003; 107: 1532-1538.
  • 141 Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 2006; 08: 1223-1234.
  • 142 Baumeister U, Funke R, Ebnet K. et al. Association of Csk to VE-cadherin and inhibition of cell proliferation. EMBO J 2005; 24: 1686-1695.
  • 143 Yamaoka-Tojo M, Ushio-Fukai M, Hilenski L. et al. IQGAP1, a novel vascular endothelial growth factor receptor binding protein, is involved in reactive oxygen species--dependent endothelial migration and proliferation. Circ Res 2004; 95: 276-283.
  • 144 Lamalice L, Le Boeuf F, Huot J. Endothelial cell migration during angiogenesis. Circ Res 2007; 100: 782-794.
  • 145 Holmqvist K, Cross MJ, Rolny C. et al. The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration. J Biol Chem 2004; 279: 22267-22275.
  • 146 Zhang S, Han J, Sells MA. et al. Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1. J Biol Chem 1995; 270: 23934-23936.
  • 147 Engelse MA, Laurens N, Verloop RE. et al. Differential gene expression analysis of tubule forming and non-tubule forming endothelial cells: CDC42GAP as a counter-regulator in tubule formation. Angiogenesis 2008; 11: 153-167.
  • 148 Bhattacharya R, Kwon J, Li X. et al. Distinct role of PLC{beta}3 in VEGF-mediated directional migration and vascular sprouting. J Cell Sci 2009; 122: 1025-1034.
  • 149 Nacak TG, Alajati A, Leptien K. et al. The BTB-Kelch protein KLEIP controls endothelial migration and sprouting angiogenesis. Circ Res 2007; 100: 1155-1163.
  • 150 Ernkvist M, Persson NL, Audebert S. et al. The Amot/Patj/Syx signalling complex spatially controls RhoA GTPase activity in migrating endothelial cells. Blood 2009; 113: 244-253.
  • 151 Garnaas MK, Moodie KL, Liu ML. et al. Syx, a RhoA guanine exchange factor, is essential for angiogenesis in vivo. Circ Res 2008; 103: 710-716.
  • 152 Aitsebaomo J, Wennerberg K, Der CJ. et al. p68RacGAP is a novel GTPase-activating protein that interacts with vascular endothelial zinc finger-1 and modulates endothelial cell capillary formation. J Biol Chem 2004; 279: 17963-17972.
  • 153 Knezevic II, Predescu SA, Neamu RF. et al. Tiam1 and Rac1 are required for platelet-activating factor-induced endothelial junctional disassembly and increase in vascular permeability. J Biol Chem 2009; 284: 5381-5394.
  • 154 Chiba Y, Ishii Y, Kitamura S. et al. Activation of rho is involved in the mechanism of hydrogen-peroxide-induced lung edema in isolated perfused rabbit lung. Microvasc Res 2001; 62: 164-171.
  • 155 Essler M, Retzer M, Bauer M. et al. Mildly oxidized low density lipoprotein induces contraction of human endothelial cells through activation of Rho/Rho kinase and inhibition of myosin light chain phosphatase. J Biol Chem 1999; 274: 30361-30364.
  • 156 Popoff MR, Geny B. Multifaceted role of Rho, Rac, Cdc42 and Ras in intercellular junctions, lessons from toxins. Biochim Biophys Acta 2009; 1788: 797-812.
  • 157 Moolenaar WH, van Meeteren LA, Giepmans BN. The ins and outs of lysophosphatidic acid signalling. Bioessays 2004; 26: 870-881.
  • 158 Parikh SM, Mammoto T, Schultz A. et al. Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Med 2006; 03: e46.
  • 159 van der Heijden M, van Nieuw Amerongen GP, Chedamni S. et al. The angiopoietin-Tie2 system as a therapeutic target in sepsis and acute lung injury. Expert Opin Ther Targets 2009; 13: 39-53.
  • 160 Iwanicki MP, Vomastek T, Tilghman RW. et al. FAK, PDZ-RhoGEF and ROCKII cooperate to regulate adhesion movement and trailing-edge retraction in fibrob-lasts. J Cell Sci 2008; 121: 895-905.
  • 161 Rumenapp U, Blomquist A, Schworer G. et al. Rho-specific binding and guanine nucleotide exchange catalysis by KIAA0380, a dbl family member. FEBS Lett 1999; 459: 313-318.
  • 162 Murray D, Horgan G, Macmathuna P. et al. NET1-mediated RhoA activation facilitates lysophosphatidic acid-induced cell migration and invasion in gastric cancer. Br J Cancer 2008; 99: 1322-1329.
  • 163 Kitzing TM, Sahadevan AS, Brandt DT. et al. Positive feedback between Dia1, LARG, and RhoA regulates cell morphology and invasion. Genes Dev 2007; 21: 1478-1483.
  • 164 Gebbink MF, Kranenburg O, Poland M. et al. Identification of a novel, putative Rho-specific GDP/GTP exchange factor and a RhoA-binding protein: control of neuronal morphology. J Cell Biol 1997; 137: 1603-1613.
  • 165 Koga Y, Ikebe M. p116Rip decreases myosin II phosphorylation by activating myosin light chain phosphatase and by inactivating RhoA. J Biol Chem 2005; 280: 4983-4991.
  • 166 Kakiashvili E, Speight P, Waheed F. et al. GEF-H1 mediates tumor necrosis factor-alpha -induced Rho activation and myosin phosphorylation: Role in the regulation of tubular paracellular permeability. J Biol Chem 2009; 284: 11454-11466.
  • 167 Papaharalambus C, Sajjad W, Syed A. et al. Tumor necrosis factor alpha stimulation of Rac1 activity. Role of isoprenylcysteine carboxylmethyltransferase. J Biol Chem 2005; 280: 18790-18796.
  • 168 Williams LM, Lali F, Willetts K. et al. Rac mediates TNF-induced cytokine production via modulation of NF-kappaB. Mol Immunol 2008; 45: 2446-2454.
  • 169 Haubert D, Gharib N, Rivero F. et al. PtdIns(4,5)P-restricted plasma membrane localization of FAN is involved in TNF-induced actin reorganization. EMBO J 2007; 26: 3308-3321.
  • 170 Van Buul JD, Hordijk PL. Endothelial adapter proteins in leukocyte trans-migration. Thromb Haemost 2009; 101: 649-655.