Skip to main content

Advertisement

Log in

Matrix Metalloproteinases and Their Tissue Inhibitors in Preterm Perinatal Complications

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The objective of this article is to review the role of matrix metalloproteinases (MMPs) in fetomaternal/neonatal complications of preterm birth. The function of MMPs as proteolytic enzymes involved in tissue remodeling/destruction is reviewed in preterm labor, preeclampsia, premature rupture of membranes, intrauterine growth restriction, chronic lung disease, necrotizing enterocolitis, intraventricular hemorrhage, cystic periventricular leukomalacia, and retinopathy of prematurity. Cytokines, steroid hormones, and reactive oxygen species all regulate MMP labor and expression/activity. In labor, activation follows an inflammatory response, which results in fetal membrane rupture and cervical dilation/ripening, particularly when premature. Expression/activation is elevated during parturition, particularly when premature. While fetal membrane rupture is preceded by increases in tissue-specific MMPs, neonatal complications also ensue from an imbalance between MMPs and their tissue inhibitors. These e fects implicate environmental triggers and a genetic predisposition. MMPs are involved in the perinatal complications of prematurity and are potential targets for therapeutic intervention. Functional MMP genetic polymorphisms may assist in identifying patients at risk of complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lawrence I. Obstetrics and Gynaecology. 2nd ed. Massachusetts:Blackwell Publishing, 2004:158–162.

    Google Scholar 

  2. Goldenberg RL, Hauth JC, Andrews WW Mechanisms of disease: Intrauterine infection and preterm delivery. N Eng J Med 2000;342:1500–1507.

    Article  CAS  Google Scholar 

  3. Avery ME, Tooley WH, Keller JB Is chronic lung disease in low birth weight infants preventable? A survey of eight centres. Pediatrics 1987;79:26–30.

    CAS  PubMed  Google Scholar 

  4. Ment LR, Oh W., Ehrenkranz RA, Philip Ags, Vohr B., Allan W. et al. Low-dose indomethacin and prevention of intraventricular haemorrhage: a multicenter randomized trial. Pediatrics 1994;93:543–550.

    CAS  PubMed  Google Scholar 

  5. Terzidou V., Bennett P. Maternal risk factors for fetal and neonatal brain damage. Biol Neonate 2001;79:157–162.

    Article  CAS  PubMed  Google Scholar 

  6. Karavaeva SA Diagnosis and characteristics of the clinical course of necrotizing enterocolitis in children.Vestn Khir Im I I Grek 2002;161:41–44.

    CAS  PubMed  Google Scholar 

  7. Hussain N., Clive J., Bhandari V. Current Incidence of Retinopathy of Prematurity, 1989–1997. Pediatrics 1999;104:26–33.

    Article  Google Scholar 

  8. Fortunato SJ, Menon R. Distinct molecular events suggest different pathways for preterm labour and premature rupture of membranes. Am J Obstet Gynecol 2001;184:1399–1406.

    Article  CAS  PubMed  Google Scholar 

  9. Fujimoto T., Parry S., Urbanek M. et al. A single nucleotide polymorphism in the matrix metalloproteinase (MMP-1) promoter influences amnion cell MMP-1 expression and risk for preterm premature rupture of fetal membranes. J Biol Chem 2002;277:6296–302.

    Article  CAS  PubMed  Google Scholar 

  10. Ferrand P., Parry S., Sammel M. et al. A polymorphism in the matrix metalloproteinase-9 promoter is associated with increased risk of preterm premature rupture of membranes in African Americans. Mol Hum Reprod 2002;8:494–501.

    Article  CAS  PubMed  Google Scholar 

  11. Petridou E., Salvanos H., Skalkidou A., Dessypris N., Moustaki M., Trichopoulos D. Are there common triggers of preterm deliveries? BJOG 2001;108:598–604.

    CAS  PubMed  Google Scholar 

  12. Parry S., Strauss JF Premature rupture of the fetal membranes. N Engl J Med 1998;338:663–670.

    Article  CAS  PubMed  Google Scholar 

  13. Dudley DJ Preterm labor: an intrauterine inflammatory response syndrome? J Reprod Immunol 1997;36:93–109.

    Article  CAS  PubMed  Google Scholar 

  14. Winkler M. Role of cytokines and other inflame mediators. Br J Obstet Gynecol 2003;110:118–123

    Article  CAS  Google Scholar 

  15. Chien EK, Ji H., Feltovich H., Clark K. Expression of matrix metalloproteinase-3 in the rat cervix during pregnancy and in response to prostaglandin E2. Am J Obstet Gynecol. 2005;192:309–317.

    Article  CAS  PubMed  Google Scholar 

  16. Visse R., Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 2003;92:827–839.

    Article  CAS  PubMed  Google Scholar 

  17. Miao X., Yu C., Tan W., Xiong P., Liang G., Lu W., Lin D. A functional polymorphism in the Matrix Metalloproteinase-2 gene promoter (-1306C/T) is associated with risk of development but not metastasis of gastric cardia adenocarcinoma. Cancer Res 2003;63:3987–3990.

    CAS  PubMed  Google Scholar 

  18. Schulz CG, Sawicki G., Lemke RP, Roeten B., Schukz R., Cheung P. MMP-2 and MMP-9 and their tissue inhibitors in the plasma of preterm and term neonates. Pediatric Res 2004;55:794–801.

    Article  CAS  Google Scholar 

  19. Bryant-Greenwood GD The extracellular matrix of the human fetal membranes: structure and function. Placenta 1998;19:1–11

    Article  CAS  PubMed  Google Scholar 

  20. Brew K., Dinakarpandian D., Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 2000;1477:267–283.

    Article  CAS  PubMed  Google Scholar 

  21. Woessner F., Nagase H. Matrix metalloproteinases and TIMPs. London:Oxford University Press, 2000.

    Google Scholar 

  22. Coppock HA, White A., Aplin JD, Westwood M. Matrix metalloprotease-3 and -9 proteolyze insulin-like growth factor-binding protein-1. Biol Reprod 2004;71:438–443.

    Article  CAS  PubMed  Google Scholar 

  23. Lappas M., Permezel M., Rice GE N-Acetyl-Cysteine inhibits phospholipids metabolism, proinflammatory cytokine release, protease activity, and nuclear factor κB deoxyribonucleic acid-binding activity in human fetal membranes in vitro. Clin Endocrinol Metab 2003;88:1723–1729.

    Article  CAS  Google Scholar 

  24. Buhimschi IA, Kramer WB, Buhimschi CS, Thompson LP, Weiner CP Reduction-oxidation (redox) state regulation of matrix metalloproteinase activity in human fetal membranes. Am J Obstet Gynecol 2000;182:458–464.

    Article  CAS  PubMed  Google Scholar 

  25. Rice GE Cytokines and the initiation of parturition. Endocrinology of Parturition. Basic Sci Clin Application 2001;27:113–146.

    CAS  Google Scholar 

  26. Arechavaleta-Velasco F., Ogando D., Parry S., Vadillo-Ortega F. Production of matrix metalloproteinase-9 in lipopolysaccharide-stimulated human amnion occurs through an autocrine and paracrine proinflammatory cytokine-dependent system. Biol Reprod 2002;67:1952–1958.

    Article  CAS  PubMed  Google Scholar 

  27. Katsura M., Ito A., Hirakawa S., Mori Y. Human recombinant interleukin-1 increases biosynthesis of collagenase and hyaluronic acid in cultured human chorionic cells. FEBS Lett 1989;244:315–318.

    Article  CAS  PubMed  Google Scholar 

  28. So T., Ito A., Sato T., Mori Y., Hirakawa S. Tumor necrosis factor-stimulates the biosynthesis of matrix metalloproteinases and plasminogen activator in cultured human chorionic cells. Biol Reprod 1992;46:772–778.

    Article  CAS  PubMed  Google Scholar 

  29. Keelan JA, Blumenstein M., Helliwell RJ, Sato TA, Marvin KW, Mitchell MD Cytokines, prostaglandins and parturition — a review. Placenta 2003;24:S33–46.

    Article  PubMed  CAS  Google Scholar 

  30. Hollier LM, Rivera MK, Henninger E., Gilstrap LC, Marshall GD T helper cell cytokine profiles in preterm labor. Am J Reprod Immunol 2004;52:192.

    Article  PubMed  Google Scholar 

  31. Saito S., Tsukaguchi N., Hasegawa T., Michimata T., Tsuda H., Narita N. Distribution of Th1, Th2 and Th0 and the Th1/Th2 cell ratios in human peripheral and endometrial T cells. AJRI 1999;42:240–245.

    CAS  PubMed  Google Scholar 

  32. Qin X., Garibay-Tupas J., Chua PK, Cachola L., Bryant-Greenwood GD An autocrine/paracrine role of human decidual relaxin I, Interstitial colagenase (MMP-1) and tissue plasminogen activator. Biol Reprod 1997;56:800–811.

    Article  CAS  PubMed  Google Scholar 

  33. Qin X., Chua PK, Ohira RH, Bryant-Greenwood. An autocrine/paracrine role of human decidual relaxin II stromeolysin (MMP-3) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1). Biol Reprod 1997;56:812–820.

    Article  CAS  PubMed  Google Scholar 

  34. Petersen LK, Helmig R., Oxlund H., Vogel L., Uldjerg, N. Relaxin induced weakening of human fetal membranes in vitro. Eur J Obstet Gynecol Reprod Biol 1994;57:123–128.

    Article  CAS  PubMed  Google Scholar 

  35. Bryant-Greenwood GD, Yamamoto SY Control of peripartal collagenolysis in the human chorion-decidua. Am J Obstet Gynecol 1995;172:63–70.

    Article  CAS  PubMed  Google Scholar 

  36. Kelly RW, Leask R., Calder AA Choriodecidual production of IL-8 and mechanism of parturition. Lancet 1994;339:776–777.

    Article  Google Scholar 

  37. Shibakura M., Niiya K., Kiguchi T. et al. Simultaneous induction of matrix metalloproteinase-9 and interleukin 8 by all-trans retinoic acid in human PL-21 and NB4 myeloid leukaemia cells. Br J Haematol 2002;118:419–425.

    Article  CAS  PubMed  Google Scholar 

  38. Sato T., Ito A., Mori Y., Yamashita K., Hayakawa T., Nagase H. Hormonal regulation of collagenolysis in uterine cervical fibroblasts. Modulation of synthesis of procollagenase, prostromelysin and tissue inhibitor of metalloproteinases (TIMP) by progesterone and oestradiol-17 beta. Biochem J 1991;275:645–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rajabi M., Solomon S., Poole AR Hormonal regulation of interstitial collagenase in the uterine cervix of the pregnant guinea pig. Endocrinology 1991;128:863–871.

    Article  CAS  PubMed  Google Scholar 

  40. Murrell GA, Jang D., Williams RJ Nitric oxide activates metalloprotease enzymes in articular cartilage. Biochem Biophys Res Commun 1995;206:15–21.

    Article  CAS  PubMed  Google Scholar 

  41. Pfeilschifter J., Schwarzenbach H. Interleukin 1 and tumor necrosis factor stimulate cGMP formation in rat renal mesangial cells. FEBS Lett 1990;273:185–187.

    Article  CAS  PubMed  Google Scholar 

  42. Pfeilschifter J., Rob P., Mulsch A., Fandrey J., Vosbeck K., Busse R.: Interleukin 1 [beta] and tumour necrosis factor [alpha] induce a macrophage-type of nitric oxide synthase in rat renal mesangial cells. Eur J Biochem 1992;203:251–255.

    Article  CAS  PubMed  Google Scholar 

  43. Kunz D., Mühl H., Walker G., Pfeilschifter J. Two distinct signalling pathways trigger the expression of inducible nitric oxide synthase in rat renal mesangial cells. Proc Natl Acad Sci USA 1994;91:5387–5391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tamura T., Nakanishi T., Kimura Y. et al. Nitric oxide mediates interleukin-1-induced matrix degradation and basic fibroblast growth factor release in cultured rabbit articular chondrocytes: a possible mechanism of pathological neovascularization in arthritis. Endocrinology 1996;137:3729–3737.

    Article  CAS  PubMed  Google Scholar 

  45. Lyons CR, Orloff GJ, Cunningham JM Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J Biol Chem 1992;267:6370–6374.

    CAS  PubMed  Google Scholar 

  46. Eizirik DL, Cagliero E., Bjorklund A., Welsh N. Interleukin-1 beta induces the expression of an isoform of nitric oxide synthase in insulin-producing cells, which is similar to that observed in activated macrophages. FEBS Lett 1992;308:249–252.

    Article  CAS  PubMed  Google Scholar 

  47. Trachtman H., Futterweit S., Garg P., Reddy K., Singhal PC Nitric oxide stimulates the activity of a 72-kDa neutral matrix metalloproteinase in cultured rat mesangial cells. Biochem Biophys Res Commun 1996;218:704–708.

    Article  CAS  PubMed  Google Scholar 

  48. Stefanovic-Racic M., Morales TI, Taskiran D., McIntyre LA, Evans CH The role of nitric oxide in proteoglycan turnover by bovine articular cartilage organ cultures. J Immunol 1996;156:1213–1220.

    CAS  PubMed  Google Scholar 

  49. Eberhardt W., Beeg T., Beck KF, et al. Nitric oxide modulates expression of matrix metalloproteinase-9 in rat mesangial cells. Kidney International 2000;57:59–69.

    Article  CAS  PubMed  Google Scholar 

  50. Haendeler J., Zeiher AM, Dimmeler S. Nitric oxide and apoptosis. Vitam Horm 1999;57:49–77.

    Article  CAS  PubMed  Google Scholar 

  51. Leist M., Single B., Naumann H., et al. Nitric oxide inhibits execution of apoptosis at two distinct ATP-dependent steps upstream and downstream of mitochondrial cytochrome c release. Biochem Biophys Res Comm 1999;29:215–221.

    Article  Google Scholar 

  52. Calmels S., Hainaut P., Ohshima H. Nitric oxide induces conformational and functional modifications of wild-type p53 tumor suppressor protein. Cancer Res 1997;57:3365–3369.

    CAS  PubMed  Google Scholar 

  53. Genaro AM, Hortelano S., Alvarez A., Martinez C., Bosca L. Splenic B lymphocyte programmed cell death is prevented by nitric oxide release through mechanisms involving sustained Bcl-2 levels. J Clin Invest 1995;95:1884–1890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liggins GC Cervical ripening as an inflammatory reaction. In: Ellwood DA, Anderson ABM, editors. The cervix in pregnancy and labor: clinical and biochemical investigations. Edinburgh:Churchill-Livingstone 1981:1–9.

    Google Scholar 

  55. Gravett MG, Witkin SS, Halusja GJ An experimental model for intramniotic infection and preterm labour in rhesus monkeys. Am J Obstet Gynecol 1994;171:1660–1667.

    Article  CAS  PubMed  Google Scholar 

  56. Domboski RA, Woodard D., Sharper MJ A rabbit model for bacteria induced preterm pregnancy loss. Am J Obstet Gynecol 1990;163:1938–1943.

    Article  Google Scholar 

  57. Hirsch E., Saotome I., Hirsh D. Obstetrics: A model of intrauterine infection and preterm delivery in mice. Am J Obstet Gynecol 1995;172:1598–1603.

    Article  CAS  PubMed  Google Scholar 

  58. Fidel PL, Romero R., Wolf N., Cutright J., Ramirez M., Araneda H., Cotton DB Systemic and local cytokine profiles in Endotoxin-induced preterm parturition in mice. Am J Obstet Gynecol 1994;170:1467–1475.

    Article  CAS  PubMed  Google Scholar 

  59. Kaga N., Katsuki Y., Obata M., Shibutani Y. Repeated administration of low-dose lipopolysaccharide induces preterm delivery in mice: a model for human preterm parturition and for assessment of the therapeutic ability of drugs against preterm delivery. Am J Obstet Gynecol 1996;174:754–759.

    Article  CAS  PubMed  Google Scholar 

  60. Oshiro B., Silver RM, Dudley DJ et al.The mouse as an investigational model for pre-term labor. Semin Reprod Endocrinol 1994;12:240–245.

    Article  Google Scholar 

  61. Terrone DA, Rinehart BK, Granger JP, Barrilleaux PS, Martin JN, Bennett WA Interleukin-10 administration and bacterial endotoxin induced preterm birth in a rat model. Obstet Gynecol 2001;98:476–480.

    CAS  PubMed  Google Scholar 

  62. Bennett, WA, Terrone, DA, Rinehart BK, Kassab, S., Martin JN, Granger JP et al. Intrauterine endotoxin infusion in rat pregnancy induces preterm delivery and increases placental prostaglandin F2α metabolite levels. Am J Obstet Gynecol 2000;182:1496–1501.

    Article  CAS  PubMed  Google Scholar 

  63. Celika H., Ayar A. Effects of erythromycin on pregnancy duration and birth weight in lipopolysaccharide-induced preterm labor in pregnant rats. Eur J Obstet Gynecol Reprod Biol 2002;103:22–25.

    Article  Google Scholar 

  64. Regan JA, Chao S., James LS Premature rupture of membranes, preterm delivery, and group B streptococcal colonization of mothers. Am J Obstet Gynecol 1981;141:184–186.

    Article  CAS  PubMed  Google Scholar 

  65. Alger LS, Lovchik JC, Hebel JR, Blackmon LR, Crenshaw MC The association of Chlamydia trachomatis, Neisseria gonorrhoeae, and group B streptococci with preterm rupture of the membranes and pregnancy outcome. Am J Obstet Gynecol 1988;159:397–404.

    Article  CAS  PubMed  Google Scholar 

  66. Ekwo EE, Gosselink CA, Woolson R., Moawad A. Risks for premature rupture of amniotic membranes. Int J Epidemiol 1993;22:495–503.

    Article  CAS  PubMed  Google Scholar 

  67. McGregor JA, French JI, Parker R., et al. Prevention of premature birth by screening and treatment for common genital tract infections: results of a prospective controlled evaluation. Am J Obstet Gynecol 1995;173:157–167.

    Article  CAS  PubMed  Google Scholar 

  68. McGregor JA, French JI, Lawellin D., Franco-Buff A., Smith C., Todd JK Bacterial protease-induced reduction of chorioamniotic membrane strength and elasticity. Obstet Gynecol 1987;69:167–174.

    CAS  PubMed  Google Scholar 

  69. Draper D., Jones W., Heine RP, Beutz M., French JI, McGregor JA Trichomonas vaginalis weakens human amniochorion in an in vitro model of premature membrane rupture. Infect Dis Obstet Gynecol 1995;2:267–274.

    CAS  Google Scholar 

  70. Zaga-Clavellina V., Merchant-Larios H., Garcia-Lopez G., Maida-Claros R., Vadillo-Ortega F. Differential secretion of matrix metalloproteinase-2 and -9 after selective infection with Group B Streptococci in human fetal membranes. J Soc Gynecol Invest 2006;13:271–279.

    Article  CAS  Google Scholar 

  71. Diaz-Cueto L., Cuica-Flores A Ziga-Cordero F, Ayala-Mendez JA Tena-Alavez G Dominguez-Lopez P, Cuevas-Antonio R, Arechavaleta-Velasco F. Vaginal Matrix metalloproteinase levels in pregnant women with bacterial vaginosis. J Soc Gynecol Invest 2006;13:430–434.

    Article  CAS  Google Scholar 

  72. Romero R., Mazor M., Tartakovsky B. Systemic administration of interleukin-1 induces preterm parturition in mice. Am J Obstet Gynecol 1991;165:969–971.

    Article  CAS  PubMed  Google Scholar 

  73. Ohyama K., Yuan B., Bessho T., Yamakawa T. Progressive apoptosis in chorion laeve trophoblast cells of human fetal membrane tissues during in vitro incubation is suppressed by antioxidative reagents. Eur J Biochem 2001;268:6182–6189.

    Article  CAS  PubMed  Google Scholar 

  74. Watari M., Watari H., DiSanto ME, Chacko S., Shi GP, Strauss J. Pro-inflammatory cytokines induce expression of matrix-metabolizing enzymes in human cervical smooth muscle cells. Am J Pathol 1999;154:1755–1762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tu FT, Goldenberg RL, Tamura T., Drews M., Zucker SJ, Voss FV Prenatal plasma matrix metalloproteinase-9 levels to predict spontaneous preterm birth. Obstet Gynecol 1998;92:446–449.

    CAS  PubMed  Google Scholar 

  76. Xu P., Alfaidy N., Challis Jrg. Expression of matrix metalloproteinase MMP-2 and MMP-9 in human placenta and fetal membranes in relation to preterm and term labor. J Clin Endocrinol Metab 2002;87:1353–1361.

    Article  CAS  PubMed  Google Scholar 

  77. Maymon E., Romero R., Pacora P., Gervasi MT, Gomez R., Edwin S., Yoon, BH Evidence of in vivo bioavailability of the active forms of matrix metalloproteinase 2 and 9, in parturition, spontaneous rupture of membranes and intraamniotic infection. Am J Obstet Gynecol 2000;183:887–894.

    Article  CAS  PubMed  Google Scholar 

  78. Vadillo-Ortega F., Sadowsky D., Haluska G. et al. Identification of matrix metalloproteinase-9 in amniotic fluid and amniochorion in spontaneous labor and after experimental intrauterine infection or interleukin-1ß infusion in pregnant rhesus monkeys. Am J Obstet Gynecol 2002;186:128–138.

    Article  CAS  PubMed  Google Scholar 

  79. Lei H., Vadillo-Ortega F., Paavola LG, Strauss JF 92kda Gelatinase MM-9 is induced in rat amnion immediately prior to parturition. Biol Reprod 1995;53:339–334.

    Article  CAS  PubMed  Google Scholar 

  80. Athayde N., Romero R., Gomez R., Maymon E., Pacora P., Mazor M., Yoon BH, Fortunato S., Menon R., Ghezzi F., Edwin S. Matrix metalloproteinase-9 in preterm and term human parturition. J Matern Fetal Med 1999;8:213–219.

    CAS  PubMed  Google Scholar 

  81. Athayde, NE, Samuel S., Romero R., Gomez R., Maymon E., Pacora P., Menon R. A role for matrix metalloproteinase-9 in spontaneous rupture of fetal membranes. Am J Obstet Gynecol 1998;179:1248–1253.

    Article  CAS  PubMed  Google Scholar 

  82. Fortunato SJ, Mennon R., Lombardi SJ Programmed cell death (apoptosis): a possible pathway to metalloproteinase activation and fetal membrane degradation in PROM. Am J Obstet Gynecol 2000;182:168–172.

    Article  Google Scholar 

  83. Schmidt W. The amniotic fluid compartment: the fetal habitat. Adv Anat Embryol Cell Biol 1992;127:1–100.

    Article  CAS  PubMed  Google Scholar 

  84. Vadillo-Ortega F., Estrada-Gutierrez G. Role of matrix metalloproteinases in preterm labour. BJOG 2005;112:19–22.

    Article  CAS  PubMed  Google Scholar 

  85. Siddiqi TA, Response to article: Fortunato SJ, Menon R. Distinct molecular events suggest different pathways for preterm labour and premature rupture of membranes. Am J Obstet Gynecol 2001;184:1399–1406.

    Article  Google Scholar 

  86. Stephenson CD, Lockwood CJ, Ma Y., Guller S. Thrombin-dependent regulation of matrix metalloproteinase (MMP)-9 levels in human fetal membranes. J Matern Fetal Neonatal Med 2005;18:17–22.

    Article  CAS  PubMed  Google Scholar 

  87. Maymon E., Romero R., Pacora P., Gomez R., Athayde N., Edwin S., Yoon BH Human neutrophil collagenase (matrix metalloproteinase 8) in parturition, premature rupture of the membranes, and intrauterine infection. Am J Obstet Gynecol 2000;183:94–99.

    Article  CAS  PubMed  Google Scholar 

  88. Nien JK, Yoon BH, Espinoza J., Kusanovic JP, Erez O., Soto E., Richani K., Gomez R., Hassan S., Mazor M., Edwin S., Bahado-Singh R., Romero R. A rapid MMP-8 bedside test for the detection of intra-amniotic inflammation identifies patients at risk for imminent preterm delivery. Am J Obstet Gynecol. 2006;195:1025–1030.

    Article  PubMed  Google Scholar 

  89. Yonemoto H., Young CB, Ross JT, Guilbert LL, Fairclough RJ, Olson DM Changes in matrix metalloproteinase (MMP)-2 and (MMP)-9 in the fetal amnion and chorion during gestation and at term and preterm labor. Placenta 2006;27:669–677.

    Article  CAS  PubMed  Google Scholar 

  90. Lyall F., Bulmer JN, Kelly H., Duffie E., Robson SC Human trophoblast invasion and spiral artery transformation: the role of nitric oxide. Am J Pathol 1999;154:1105–1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Galewska Z., Bankowski E., Romanowicz L., Jawxrski S. Preeclampsia (EPH-gestosis)-induced decrease of MMP-s content in the umbilical cord artery. Clin Chim Acta 2003;335:109–115.

    Article  CAS  PubMed  Google Scholar 

  92. Lyall F. Priming and remodelling of human placental bed spiral arteries during pregnancy — a review. Placenta 2005;26:S31–36.

    Article  PubMed  Google Scholar 

  93. Pijnenborg R., Anthony J., Davey DA, Rees A., Tiltman A., Vercruysse L., van Assche A. Placental bed spiral arteries in the hypertensive disorders of pregnancy. Br J Obstet Gynaecol 1991;98:648–655.

    Article  CAS  PubMed  Google Scholar 

  94. Morgan M., Kniss D., McDonnell S. Expression of metalloproteinases and their inhibitors in human trophoblast continuous cell lines. Exp Cell Res 1998;242:18–26.

    Article  CAS  PubMed  Google Scholar 

  95. Nawrocki B., Polette M., Marchand V., Maquoi E., Beorchia A., Tournier JM, Foidart JM, Birembaut P. Membrane-type matrix metalloproteinase-1 expression at the site of human placentation. Placenta 1996;17:565–572.

    Article  CAS  PubMed  Google Scholar 

  96. Huppertz B., Kertschanska S., Demir AY, Frank HG, Kaufmann P. Immunohistochemistry of matrix metalloproteinases (MMP), their substrates, and their inhibitors (TIMP) during trophoblast invasion in the human placenta. Cell Tissue Res 1998;291:133–148.

    Article  CAS  PubMed  Google Scholar 

  97. Seval Y., Akkoyunlu G., Demir R., Asar M. Distribution patterns of matrix metalloproteinase (MMP)-2 and -9 and their inhibitors (TIMP-1 and TIMP-2) in the human decidua during early pregnancy. Acta Histochem 2004;106:353–362.

    Article  CAS  PubMed  Google Scholar 

  98. Xu P., Wang YL, Zhu SJ, Luo SY, Piao YS, Zhuang LZ Expression of matrix metalloproteinase-2, -9 and -14, tissue inhibitors of matrix metalloproteinase-1 and matrix proteins in human placenta during the first trimester. Biol Reprod 2000;62:988–994.

    Article  CAS  PubMed  Google Scholar 

  99. Wang H., Wen Y., Mooney S., Li H., Behr B., Polan ML Matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase expression in human preimplantation embryos. Fertil Steril 2003;2:736–742.

    Article  Google Scholar 

  100. Isaka K., Usada S., Ito H., Sagawa Y., Nakamura H., Nishi H., Suzuki Y. et al. Expression and activity of matrix metalloproteinase 2 and 9 in human trophoblasts. Placenta 2003;24:53–64.

    Article  CAS  PubMed  Google Scholar 

  101. Wang H., Li Q., Shao L., Zhu C. Expression of matrix metalloproteinase-2, -9, -14, and tissue inhibitors of metalloproteinase-1, -2, -3 in the endometrium and placenta of rhesus monkey (Macaca mulatta) during early pregnancy. Biol Reprod 2001;65:31–40.

    Article  CAS  PubMed  Google Scholar 

  102. Blankenship TN, King BF Identification of 72-kilodalton type IV collagenase at sites of trophoblastic invasion of macque spiral arteries. Placenta 1994;15:177–187.

    Article  CAS  PubMed  Google Scholar 

  103. Freitas S., Meduri G., Le Nestour E., Bausero P., Perrot-Applanat M. Expression of metalloproteinases and their inhibitors in blood vessels in human endometrium. Biol Reprod 1999;61:1070–1082.

    Article  CAS  PubMed  Google Scholar 

  104. Roberts JM, Redman CW Pre-eclampsia: more than pregnancy induced hypertension. Lancet 1993;341:1447–1451.

    Article  CAS  PubMed  Google Scholar 

  105. Huismana MA, Timmerb A., Zeinstrab M., Serliera EK, Hanemaaijerc R., Goorb HV et al. Matrix-metalloproteinase activity in first trimester placental bed biopsies in further complicated and uncomplicated pregnancies. Placenta 2004;25:253–258.

    Article  CAS  Google Scholar 

  106. Narumiya H., Zhang Y., Fernandez-patron C., Guilbert LJ, Davidge ST Matrix metalloproteinase-2 is elevated in the plasma of women with pre-eclampsia. Hypertens Pregnancy 2001;20:185–194.

    Article  CAS  PubMed  Google Scholar 

  107. Merchant SJ, Narumiya H., Zhang Y., Guilbert LJ, Davidge ST The effects of pre-eclampsia and oxygen environment on endothelial release of matrix metalloproteinase-2. Hypertens Pregnancy 2004;23:47–60.

    Article  CAS  PubMed  Google Scholar 

  108. Merchant SJ, Davidge ST The role of matrix metalloproteinase in vascular function: implications for normal pregnancy and pre-eclampsia. Br J Obstet Gynecol 2004;111:931–939.

    Article  CAS  Google Scholar 

  109. Novak J., Opett SL, Conrad KP Matrix metalloproteinase-2 mediates the reduced myogenic reactivity during pregnancy and in relaxin treated non-pregnant rats. J Soc Gynecol Invest 2003;10:245.

    Google Scholar 

  110. Kerchner LJ, Fisher MC, Conrad KP The pregnancy hormone relaxin up regulates matrix metalloproteinase-2 (MMP-2) in small renal arteries from rats. J Soc Gynecol Investig 2003;10:244.

    Article  Google Scholar 

  111. Jeyabalan A., Danielson LA, Kerchner LJ, Conrad KP Vascular matrix metalloproteinase(s) mediates renal vasodilation and hyperfiltration in relaxin-treated rats. J Soc Gynecol Investig 2003;10:198–199.

    Google Scholar 

  112. Bankowski E., Romanowicz L., Jaworski S. Collagen of umbilical cord arteries and its alterations in EPH-gestosis. J Perinat Med 1993;21:491–498.

    Article  CAS  PubMed  Google Scholar 

  113. Bafikowski E., Pawlicka E., Jaworski S. Collagen biosynthesis in the wall of the umbilical cord artery and its alteration in EPH-Gestosis. Pathophysiology 1997;4:9–13.

    Article  Google Scholar 

  114. Dobson PC, Abell DA, Beischer NA Mortality and morbidity of fetal growth retardation. Aust NZJ Obstet Gynaecol 1981;21:69–72.

    Article  CAS  Google Scholar 

  115. Barker DJ Intrauterine programming of adult disease. Mol Med Today 1995;1:418–423.

    Article  CAS  PubMed  Google Scholar 

  116. Barker DJ, Bull AR, Osmand C., Simmonds SJ Fetal and placental size and risk of hypertension in adult life. BMJ 1990;301:259–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Barker DJ, Winter PD, Osmond C., Margetts B., Simmonds SJ Weight in infancy and death from ischaemic heart disease. Lancet 1989;2:577–580.

    Article  CAS  PubMed  Google Scholar 

  118. Macara L., Kingdom Jcp, Kaufmann P. et al. Structural analysis of placental terminal villi from growth-restricted pregnancies with abnormal umbilical artery Doppler waveforms. Placenta 1996;17:37–48.

    Article  CAS  PubMed  Google Scholar 

  119. Merchant SJ, Crocker IP, Baker PN, Tansinda D., Davidge ST, Guilbert LJ Matrix metalloproteinase release from placental explants of pregnancies complicated by intrauterine growth restriction. J Soc Gynecol Investig 2004;11:97–103.

    Article  CAS  PubMed  Google Scholar 

  120. Ekekezie II, Thibeault DW, Simon SD et al. Low levels of tissue inhibitors of metalloproteinases with a high matrix metalloproteinase-9/tissue inhibitor of metalloproteinase-1 ratio are present in tracheal aspirate fluids of infants who develop chronic lung disease. Pediatrics 2004;113:1709–1714.

    Article  PubMed  Google Scholar 

  121. Shennan AT, Ohlsson A., Lennox K., Hoskins EM Abnormal pulmonary outcomes in premature infants: prediction from oxygen requirement in the neonatal period. Pediatrics 1988;82:527–532.

    CAS  PubMed  Google Scholar 

  122. Primhak RA Discharge and aftercare in chronic lung disease of the newborn. Semin Neonatol 2003;8:117–126.

    Article  CAS  PubMed  Google Scholar 

  123. Sweet DG, Mcmahon KJ, Curley AE, O’Conor CM, Halliday HL. Type 1 collagenases in bronchoalveolar lavage fluid from preterm babies at risk of developing chronic lung disease. Arch Dis Child Fetal Neonatal Ed 2001;84:168–171.

    Article  Google Scholar 

  124. Agrawal V., David RJ, Harris VJ Classification of acute respiratory disorders of all newborns in a tertiary care center. J Natl Med Assoc 2003;95:585–595.

    PubMed  PubMed Central  Google Scholar 

  125. Shaw SR, Henderson N., Knox AJ, Watson SA, Buttle DJ, Johnson SR Matrix metalloproteinase expression and activity in human airway smooth muscle cells. Br J Pharmacol 2004;142:1318–1324.

    Article  CAS  Google Scholar 

  126. Molet S., Belleguic C., Lena H., Germain N., Bertrand CP, Shapiro SD, Planquois JM, Delaval P., Lagente V. Increase in macrophage elastase (MMP-12) in lungs from patients with chronic obstructive pulmonary disease. Inflamm Res 2005;54:31–36.

    Article  CAS  PubMed  Google Scholar 

  127. Zheng L., Lam WK, Tipoe GL, Shum IH, Yan C., Leung R., Sun J., Ooi GC, Tsang KW Overexpression of matrix metalloproteinase-8 and -9 in bronchiectatic airways in vivo. Eur Respir J 2002;20:170–176.

    Article  PubMed  CAS  Google Scholar 

  128. Davidson JM Biochemistry and turnover of lung interstitium. Eur Respir J 1990;3:1048–1068.

    CAS  PubMed  Google Scholar 

  129. Winkler Mk, Folds JK, Bunn RC, Folks JL. Implications for matrix metalloproteinases as modulators of paediatric lung disease. Am J Physiol Lung Cell Mol Physiol 2003;284:557–565.

    Article  Google Scholar 

  130. Dik WA, van Kaam AH, Dekker T., Naber BA, Janssen DJ, Kroon AA, Zimmermann LJ, Versnel MA, Lutter R. Early increased levels of matrix metalloproteinase-9 in neonates recovering from respiratory distress syndrome. Biol Neonate 2006;89:6–14.

    Article  CAS  PubMed  Google Scholar 

  131. Sweet DG, Curley AE, Chesshyre E., Pizzotti J., Wilbourn MS, Halliday HL, Warner JA The role of matrix metalloproteinases -9 and -2 in development of neonatal chronic lung disease. Acta Paediatr 2004;93:791–796.

    Article  CAS  PubMed  Google Scholar 

  132. Sweet DG, Halliday HL, Warner J. Airway remodelling in chronic lung disease of prematurity. Paediatr Respir Rev 2002;3:140–146.

    Article  PubMed  Google Scholar 

  133. Ohki Y., Kato M., Kimura H., Nako Y., Tokuyama K., Mariana A. Elevated type 1V collagen in bronchioalveolar lavage fluid from infants with bronchopulmonary dysphasia. Biol neonate 2001;79:34–38.

    Article  CAS  PubMed  Google Scholar 

  134. Reservist K., Soars T., Tervahartiala T., Maisi P., Reunanen K., Lassus P., Andersson S. Matrix metalloproteinases -2, -8, and -9 and TIMP-2 in tracheal aspirates from preterm infants with respiratory distress. Pediatrics 2001;108:686–692.

    Article  Google Scholar 

  135. Pender Slf, Braegger C., Gunther L., Monteleone G., Meuli M., Schuppan D. Macdonald TT. Matrix metalloproteinases in necrotising enterocolitis. Pediatric Res 2003;54:160–164.

    Article  CAS  Google Scholar 

  136. Coit AK Necrotizing enterocolitis. J Perinatal Neonatal Nurs 1999;12:53–66.

    Article  CAS  Google Scholar 

  137. Kliegman RM, Fanaroff AA Necrotizing Enterocolitis. N Engl J Med 1984;310:1093–1103.

    Article  CAS  PubMed  Google Scholar 

  138. Wilson R., Kanto WP, McCarthy BJ et al. Epidemiologic characteristics of necrotizing enterocolitis: a population-based study. Am J Epidemiol 1981;114:880–887.

    Article  CAS  PubMed  Google Scholar 

  139. Stoll BJ, Kanto WP, Glass RI, Nahmias AJ, Brann AW Epidemiology of necrotising enterocolitis: a case control study. J Pediatr 1980;96:447–451.

    Article  CAS  PubMed  Google Scholar 

  140. Heuschkel RB, Macdonald TT, Monteleone G., Elliott MB, Smith Jaw, Pender Slf. Imbalance of stromeolysin-1 and tIMP-1 in the mucosal lesions of children with inflammatory bowel disease. Gut 2000;47:57–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Pender Slf, Tickle SP, Docherty Ajp, Howie D., Wathen NC, Macdonald TT A major role fro matrix metalloproteinases in T cell injury in the gut. J Immunol 1997;158:1582–1590.

    CAS  PubMed  Google Scholar 

  142. Pender Slf, Braegger C., Gunther U., Monteleone G., Meuli M., Schuppan D., Macdonald TT Matrix metalloproteinases in necrotising enterocolitis. Pediatric Res 2003;54:160–164.

    Article  CAS  Google Scholar 

  143. Kien CL Digestion, absorption and fermentation of carbohydrate in the newborn. Clinical Perinatology 1996;23:211–228.

    Article  CAS  Google Scholar 

  144. Pender SL, Quinn JJ, Sanderson IR, MacDonald TT Butyrate up regulates stromelysin-1 production by intestinal mesenchymal cells. Am J Physiol Gastrointest Liver Physiol 2000;279:918–924.

    Article  Google Scholar 

  145. Bister V., Salmela MT, Heikkila P., Anttila A., Rintala R., Isaka K., Andersson S., Saarialho-Kere U. Matrilysins-1 and -2 (MMP-7 and -26) and metalloelastase (MMP-12), unlike MMP-19, are up-regulated in necrotizing enterocolitis. J Pediatr Gastroenterol Nutr 2005;40:60–66.

    Article  CAS  PubMed  Google Scholar 

  146. Weindling M. Periventricular haemorrhage and periventricular leukomalacia. BJOG 1995;102:278–281.

    Article  CAS  Google Scholar 

  147. Vergani P., Locatelli A., Doria V., Assi F., Paterlini G., Pezullo JC, Ghidini A. Intraventricular Hemorrhage and Periventricular Leukomalacia in Preterm Infant. Obstet Gynecol 2001;104:223–231.

    Google Scholar 

  148. Power C., Henry S., Del Bigio MR, Larsen PH, Corbertt DC, Imai Y., Yong VW, Peeling J. Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann Neurol 2003;53:731–742.

    Article  CAS  PubMed  Google Scholar 

  149. Wells JE, Biernaskie J., Szymanska A., Larsen PH, Yong VW, Corbett D. Matrix metalloproteinase (MMP)-12 expression has a negative impact on sensorimotor function following intracerebral haemorrhage in mice. Eur J Neurosci 2005;21:187–196.

    Article  PubMed  Google Scholar 

  150. Weinberger B., Laskin DL, Heck DE, Laskin JD Oxygen toxicity in premature infants. Toxicol Appl Pharmacol 2000;181:60–67.

    Article  CAS  Google Scholar 

  151. Hsueh W., Caplan MS, Qu XW, Tan XD, De Plaen IG, Gonzalez-Crussi F. Neonatal necrotizing enterocolitis: clinical considerations and pathogenetic concepts. Pediatr Dev Pathol 2003;6:6–23.

    Article  PubMed  Google Scholar 

  152. Volpe JJ Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res 2001;50:553–562.

    Article  CAS  PubMed  Google Scholar 

  153. Saugstad OD Update on oxygen radical disease in neonatology. Curr Opin Obstet Gynecol 2001;13:147–153

    Article  CAS  PubMed  Google Scholar 

  154. Rogers S., Witz G., Anwar M., Hiatt M., Hegyi T. Antioxidant capacity and oxygen radical diseases in the preterm newborn. Arch Paediatr Adolesc Med 2000;154:544–548.

    Article  CAS  Google Scholar 

  155. Frank L., Sosenko IR Failure of premature rabbits to increase antioxidant enzymes during hyperoxic exposure: increased susceptibility to pulmonary oxygen toxicity compared with term rabbits. Pediatr Res 1991;29:292–266.

    Article  CAS  PubMed  Google Scholar 

  156. Chen Y., Whitney PL, Frank L. Comparative responses of premature versus full-term newborn rats to prolonged hyperoxia. Pediatr Res 1994;35:233–237.

    Article  CAS  PubMed  Google Scholar 

  157. Ohno-Matsui T., Uetama T., Yoshida T., Hayano M., Itoh T., Morita I., Mochizuki M. Reduced Retinal Angiogenesis in MMP-2—Deficient Mice. Invest Ophthalmol Vis Sci 2003;44:5370–5375.

    Article  PubMed  Google Scholar 

  158. Das A., McLamore A., Song W., McGuire PG Retinal neovascularization is suppressed with a matrix metalloproteinase inhibitor. Arch Ophthalmol 1999;117:498–503.

    Article  CAS  PubMed  Google Scholar 

  159. Penn JS, Rajaratnam VS Inhibition of retinal neovascularization by intravitreal injection of human rPAI-1 in a rat model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 2003;44:5423–5429.

    Article  PubMed  Google Scholar 

  160. Notari L., Miller A., Martinez A. et al. Pigment epithelium-derived factor is a substrate for matrix metalloproteinase type 2 and type 9: implications for downregulation in hypoxia. Invest Ophthalmol Vis Sci 2005;46:2736–2747.

    Article  PubMed  Google Scholar 

  161. Varner MW, Esplin MS Current understanding of genetic factors in preterm birth. BJOG 2005;112:28–31.

    Article  CAS  PubMed  Google Scholar 

  162. Porter TF, Fraser AM, Hunter CY, Ward RH, Varner MW The risk of preterm birth across generations. Obstet Gynecol 1997;90:63–67.

    Article  CAS  PubMed  Google Scholar 

  163. Clausson B., Lichtenstein P., Cnattingius S. Genetic influence on birthweight and gestational length determined by studies in offspring of twins. BJOG 2000;107:375–381.

    Article  CAS  PubMed  Google Scholar 

  164. Treloar SA, Macones GA, Mitchell LE, Martin NG Genetic influences on premature parturition in an Australian twin sample. Twin Res 2000;3:80–82.

    Article  CAS  PubMed  Google Scholar 

  165. Ward K., Argyle V., Meade M., Nelson L. The heritability of preterm delivery. Obstet Gynecol 2005 106(6):1235–1239.

    Article  PubMed  Google Scholar 

  166. Adams MM, Read JA, Rawlings JS, Harlass FB, Sarno AP, Rhodes PH Preterm delivery among black and white enlisted women in the United States Army. Obstet Gynecol 1993;81:65–71.

    CAS  PubMed  Google Scholar 

  167. Hoffman JD, Ward K. Genetic factors in preterm delivery. Obstet Gynecol Surv 1999;54:203–210.

    Article  CAS  PubMed  Google Scholar 

  168. Steer P. The epidemiology of preterm labour. BJOG 2005;112:1–3.

    Article  PubMed  Google Scholar 

  169. Amory JH, Adams KM, Lin MT, Hansen JA, Eschenbach DA, Hitti J. Adverse outcomes after preterm labor are associated with tumor necrosis factor-alpha polymorphism- 863, but not -308, in mother-infant pairs. Am J Obstet Gynecol 2004;191:1362–1367.

    Article  CAS  PubMed  Google Scholar 

  170. Genc MR, Gerber S. Nesin M Witkin SS. Polymorphism in the interleukin-1 gene complex and spontaneous preterm delivery. Am J Obstet Gynecol 2002;187:157–163.

    Article  CAS  PubMed  Google Scholar 

  171. Moore S., Ide M., Randhawa M., Walker JJ, Reid JG, Simpson NA An investigation into the association among preterm birth, cytokine gene polymorphisms and periodontal disease. Br J Obstet Gynecol 2004;111:125–132.

    Article  CAS  Google Scholar 

  172. Hermandez-Guerrero C., Monzon-Bordonaba F., Jimenez-Zamudio L. et al. In vitro secretion of proinflammatory cytokines by human amniochorion carrying hyper-responsive gene polymorphisms of tumour necrosis factor-alpha and interleukin-1 beta. Mol Hum Reprod 2003;9:625–629.

    Article  Google Scholar 

  173. Annells MF, Hart PH, Mullighan CG, Heatley SL, Robinson JS, Bardy P., McDonald HM Interleukins-1, -4, -6, -10, tumor necrosis factor, transforming growth factor-beta, FAS, and mannose-binding protein C gene polymorphisms in Australian women: Risk of preterm birth. Am J Obstet Gynecol 2004;191:2056–2067.

    Article  CAS  PubMed  Google Scholar 

  174. Terrien J., Marque C., Germain G. What is the future of tocolysis? Eur J Obstet Gynecol Reprod Biol 2004;117:10.

    Article  Google Scholar 

  175. Jormsjo S., Ye S., Moritz J., Walter DH, Dimmeler S., Zeiher AM, Henney A., Hamsten A., Eriksson P. Allele specific regulation of matrix metalloproteinase-12 gene activity is associated with coronary artery luminal dimensions in diabetic patients with manifest coronary artery disease. Circ Res 2000;86:998–1003.

    Article  CAS  PubMed  Google Scholar 

  176. Heller RA Transcriptional control of matrix metalloproteinases and the tissue inhibitors of matrix metalloproteinases. Crit Rev Eukaryot Gene Expr 1997;7:159–178.

    Article  PubMed  Google Scholar 

  177. Shimajiri S., Arima N., Tanimoto A., Murato Y., Hamada T., Wang K., Sasaguri Y. Shortened microsatellite d(CA)21 sequence down-regulates promoter activity of matrix metalloproteinase 9 gene. FEBS Lett 1999;455:70–74.

    Article  CAS  PubMed  Google Scholar 

  178. Ye S. Polymorphism in matrix metalloproteinase gene promoters: implication in regulation of gene expression and susceptibility of various diseases. Matrix Biol 2000;19:623–629.

    Article  CAS  PubMed  Google Scholar 

  179. Wang H., Parry S., Macones G. et al. Functionally significant SNP MMP8 promoter haplotypes and preterm premature rupture of membranes (PPROM). Hum Mol Genet 2004;13:2659–2669.

    Article  CAS  PubMed  Google Scholar 

  180. Hu, S., Klein M., Carozza M., Rediske J., Peppard J., Qi, J. Identification of a splice variant of neutrophil collagenase (MMP-8). FEBS Lett 1999;443:8–10.

    Article  CAS  PubMed  Google Scholar 

  181. Hirano K., Sakamoto T., Uchida Y., Morishima Y., Masuyama K., Ishii Y. et al. Tissue inhibitor of matrix metalloproteinases-2 gene polymorphisms in chronic obstructive pulmonary disease. Eur Respir J 2001;18:748–752.

    Article  CAS  PubMed  Google Scholar 

  182. Zhou Y., Yu C., Miao X., Tan W., Liang G., Xiong P. et al. Substantial reduction in risk of breast cancer associated with genetic polymorphisms in the promoters of matrix metalloproteinases-2 and tissue inhibitors of metalloproteinase-2 genes. Carcinogenesis 2004;25:399–404.

    Article  CAS  PubMed  Google Scholar 

  183. Ross JS, Kaur P., Sheehan CE, Fisher HA, Kaufman RA, Kallakury BV Prognostic significance if matrix metalloproteinase 2 and tissue inhibitor of metalloproteinase 2 expression in prostate cancer. Mod Pathol 2003;16:198–205.

    Article  PubMed  Google Scholar 

  184. Galateau-Salle FB, Luna RE, Horiba K. et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in bronchial squamous preinvasive lesions. Hum Pathol 2000;31:296–305.

    Article  CAS  PubMed  Google Scholar 

  185. Nakopoulou L., Tsirmpa I., Alexandrou P. et al. MMP-2 protein in invasive breast cancer and the impact of MMP-2/TIMP-2 phenotype on overall survival. Breast Cancer Res Treat 2003;77:145–155.

    Article  CAS  PubMed  Google Scholar 

  186. Baker EA, Stephenson TJ, Reed MW, Brown NJ Expression of proteinases and inhibitors in human breast cancer progression and survival. Mol Pathol 2002;55:300–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Murphy G., Houbrechts A., Cockett MI, Williamson RA, O’Shea M, Docherty AJ. The N-terminal domain of tissue inhibitor of metalloproteinases retains metalloproteinase inhibitory activity. Biochemistry 1991;30:8097–8102.

    Article  CAS  PubMed  Google Scholar 

  188. DeClerck YA, Yean TD, Lee Y., Tomich JM, Langley KE Characterization of the functional domain of tissue inhibitor of metalloproteinases-2 (TIMP-2). Biochem J 1993;289:65–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Willenbrock F., Crabbe T., Slocombe PM et al.The activity of the tissue inhibitors of metalloproteinases is regulated by C-terminal domain interactions: a kinetic analysis of the inhibition of gelatinase A. Biochemistry 1993;32:4330–4337.

    Article  CAS  PubMed  Google Scholar 

  190. Nguyen Q., Willenbrock F., Cockett MI, O’Shea M, Docherty AJ, Murphy G. Different domain interactions are involved in the binding of tissue inhibitors of metalloproteinases to stromelysin-1 and gelatinase A. Biochemistry 1994;33:2089–2095.

    Article  CAS  PubMed  Google Scholar 

  191. Williamson RA, Carr MD, Frenkiel TA, Feeney J., Freedman RB Mapping the binding site for matrix metalloproteinase on the N-terminal domain of the tissue inhibitor of metalloproteinases-2 by NMR chemical shift perturbation. Biochemistry 1997;36:13882–13889.

    Article  CAS  PubMed  Google Scholar 

  192. Fernandez-Catalan C., Bode W., Huber R., Turk D., Calvete JJ, Lichte A., Tschesche H., Maskos K. Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor. EMBO J 1998;17:5238–5248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Butler GS, Hutton M., Wattam BA, Williamson RA, Knäuper V., Willenbrock F. et al. The specificity of TIMP-2 for matrix metalloproteinases can be modified by single amino acid mutations. J Biol Chem 1999;274:20391–20396.

    Article  CAS  PubMed  Google Scholar 

  194. Hughes TA Regulation of gene expression by alternative untranslated regions. Trends Genet 2006;22:119–122.

    Article  CAS  PubMed  Google Scholar 

  195. Vollmert C., Windl O., Xiang W. et al. Significant association of a M129V independent polymorphism in the 5′ UTR of the PRNP gene with sporadic Creutzfeldt-Jakob disease in a large German case-control study. J Med Genet 2006;43:e53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Sentinelli F., Filippi E., Fallarino M. et al. The 3′-UTR C>T polymorphism of the oxidized LDL-receptor 1 (OLR1) gene does not associate with coronary artery disease in Italian CAD patients or with the severity of coronary disease. Nutr Metab Cardiovasc Dis 2006;16:345–352.

    Article  CAS  PubMed  Google Scholar 

  197. Rasmussen HP, McCann PP Matrix metalloproteinase inhibition as a novel anticancer strategy: A review with special focus on batimastat and marimastat. Pharmacol Ther 1997;75:69–75.

    Article  CAS  PubMed  Google Scholar 

  198. Wojtowicz-Praga SJ, Torri M., Johnson V., Steen J., Marshall E., Ness R. et al. Phase I trial of marimastat, a novel matrix metalloproteinase inhibitor, administered orally to patients with advanced lung cancer. J Clin Oncol 1998;16:2150–2156.

    Article  CAS  PubMed  Google Scholar 

  199. Vasku V., Vasku A., Tschoplova S., Izakovicova HL, Semradova V., Vacha J. Genotype association of C(-735)T polymorphism in matrix metalloproteinase 2 gene with G(8002)A endothelin 1 gene with plaque psoriasis. Dermatology 2002;204:262–265.

    Article  CAS  PubMed  Google Scholar 

  200. Yu C., Zhou Y., Miao X., Xiong P., Tan W., Lin D. Functional haplotypes in the promoter of matrix metalloproteinase-2 predict risk of the occurrence and metastasis of esophageal cancer. Cancer Res 2004;64:7622–7628.

    Article  CAS  PubMed  Google Scholar 

  201. Vasku A., Goldbergova M., Izakovicova Holla L et al. A haplotype constituted of four MMP-2 promoter polymorphisms (-1575G/A, -1306C/T, -790T/G and -735C/T) is associated with coronary triple-vessel disease. Matrix Biol 2004;22:585–591.

    Article  CAS  PubMed  Google Scholar 

  202. Zhang B., Dhillon S., Geary I., Howell M., Iannotti F., Day I., Ye S. Polymorphisms in matrix metalloproteinase-1, -3, -9, and -12 genes in relation to subarachnoid hemorrhage. Stroke 2001;32:2198.

    Article  CAS  PubMed  Google Scholar 

  203. Ye S., Whatling C., Watkins H., Henney A. Human stromeolysin gene promoter activity is modulated by transcription factor ZBP-89. FEBS lett 1999;450:268–272.

    Article  CAS  PubMed  Google Scholar 

  204. Beyzade S., Zhang S., Wong YK Influence of matrix metalloproteinases-3 gene variation on extent of coronary atherosclerosis and risk of myocardial infarction. J Am Coll Cardiol 2003;41:2130–2137.

    Article  CAS  PubMed  Google Scholar 

  205. Jormsjo S., Whatling C., Walter DH, Zeiher AM, Hamsten A., Erikson P. Allele specific regulation of matrix metalloproteinase-7 promoter activity is associated with coronary artery luminal dimensions among hypercholesterolemic patients. Arterioscler, Thromb, Vasc Biol 2001;21:1834.

    Article  CAS  Google Scholar 

  206. Zhang B., Ye S., Herrmann SM et al. Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation 1999;99:1788–1794.

    Article  CAS  PubMed  Google Scholar 

  207. Morgan AR, Zhang B., Tapper W., Collins A., Ye S. Haplotypic analysis of the MMP-9 gene in relation to coronary artery disease. J Mol Med 2003;81:321–326.

    Article  CAS  PubMed  Google Scholar 

  208. Joos L., He JQ, Shepherdson MB, Connett JE, Anthonisen NR, Paré PD The role of matrix metalloproteinase polymorphisms in the rate of decline in lung function. Hum Mol Genet 2002;11:569–576.

    Article  CAS  PubMed  Google Scholar 

  209. Yoon, S., Kuivaniemi H., Gatalica Z. et al. MMP-13 promoter polymorphism is associated with atherosclerosis in the abdominal aorta of young black males. Matrix Biol 2002;21:487–498.

    Article  CAS  PubMed  Google Scholar 

  210. Yoon S., Kuivaniemi H., Gatalica Z. et al. MMP13 promoter polymorphism is associated with atherosclerosis in the abdominal aorta of young black males. Matrix Biol 2002;21:487–498.

    Article  CAS  PubMed  Google Scholar 

  211. Krex D., Röhl H., König IR, Ziegler A., Schackert HK, Schackert G. Tissue inhibitor of metalloproteinases-1, -2, and -3 polymorphisms in a white population with intracranial aneurysms. Stroke 2003;34:2817.

    Article  CAS  PubMed  Google Scholar 

  212. Tilson, MD, Reilly JM, Brophy CM, Webster EL, Barnett TR Expression and sequence of the gene for tissue inhibitor of metalloproteinases in patients with abdominal aortic aneurysms. J Vasc Sur 1993;18:266–270.

    Article  CAS  Google Scholar 

  213. Wang X., Tromp G., Cole CW, Verloes A., Sakalihasan N., Yoon S. et al. Analysis of coding sequences for tissue inhibitor of metalloproteinases 1 (TIMP1) and 2 (TIMP2) in patients with aneurysms. Matrix Biol 1999;18:121–124.

    Article  CAS  PubMed  Google Scholar 

  214. Hegab AE, Sakamoto T., Uchida Y., Nomura A., Ishii Y., Morishima Y. et al. Promoter activity of human tissue inhibitor of metalloproteinase 2 gene with novel single nucleotide polymorphisms. Respirology 2005;10:27–30.

    Article  PubMed  Google Scholar 

  215. Hirano K., Sakamoto T., Uchida Y., Morishima Y., Masuyama K., Ishii Y., Nomura A., Ohtsuka M., Sekizawa K. Tissue inhibitor of metalloproteinases-2 gene polymorphisms in chronic obstructive pulmonary disease. Eur Respir J 2001;18:748–752.

    Article  CAS  PubMed  Google Scholar 

  216. Beranek M., Kankova K., Muzik J. Identification of novel common polymorphisms in the promoter region of the TIMP-3 gene in Czech population. Mol Cell Probes 2000;14:265–268.

    Article  CAS  PubMed  Google Scholar 

  217. Hill MR, Briggs L., Montano MM, Estrada A., Laurent GJ, Selman M., Pardo A. Hill MR, Briggs L., Montano MM, Estrada A., Laurent GJ, Selman M., Pardo A. Promoter variants in tissue inhibitor of metalloproteinase-3 (TIMP-3) protect against susceptibility in pigeon breeders’ disease. Thorax 2004;59:586–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas M. Orsi PhD.

Additional information

Source of funding: Cerebra — for Brain Injured Children and Young People

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cockle, J.V., Gopichandran, N., Walker, J.J. et al. Matrix Metalloproteinases and Their Tissue Inhibitors in Preterm Perinatal Complications. Reprod. Sci. 14, 629–645 (2007). https://doi.org/10.1177/1933719107304563

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719107304563

Key words

Navigation