Skip to main content

Advertisement

Log in

Transforming Growth Factor β3 Regulates the Versican Variants in the Extracellular Matrix-Rich Uterine Leiomyomas

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Uterine leiomyoma are common, benign tumors that are enriched in extracellular matrix. The tumors are characterized by a disoriented and loosely packed collagen fibril structure similar to other diseases with disrupted Transforming growth factor β (TGF-β) signaling. Here we characterized TGF-β3 signaling and the expression patterns of the critical extracellular matrix component versican in leiomyoma and myometrial tissue and cell culture. We also demonstrate the regulation of the versican variants by TGF-β3. Using leiomyoma and matched myometrium from 15 patients, messenger RNA (mRNA) from leiomyoma and myometrium was analyzed by semiquantitative real time reverse transcription—polymerase chain reaction (RT-PCR), while protein analysis was done by western blot. Transforming growth factor β3 transcripts were increased 4-fold in leiomyoma versus matched myometrium. Phosphorylated-TGF-β RII and phosphorylated-Smad 2/3 complex were greater in leiomyoma as documented by Western blot. The inhibitor Smad7 transcripts were decreased 0.44-fold. The glycosaminoglycan (GAG)-rich versican variants were elevated in leiomyoma versus myometrial tissue: specifically V0 (4.27 ± 1.12) and V1 (2.01 ± 0.27). Treatment of leiomyoma and myometrial cells with TGF-β3 increased GAG-rich versican variant expression 7 to 12 fold. Neutralizing TGF-β3 antibody decreased the expression of the GAG-rich versican variants 2 to 8 fold in leiomyoma cells. Taken together, the aberrant production of excessive and disorganized extracellular matrix that defines the leiomyoma phenotype involves the activation of the TGF-β signaling pathway and excessive production of GAG-rich versican variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leppert PC, Baginski T, Prupas C, Catherino WH, Pletcher S, Segars JH. Comparative ultrastructure of collagen fibrils in uterine leiomyomas and normal myometrium. Fertil Steril. 2004;82(suppl 3):1182–1187.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Catherino WH, Leppert PC, Stenmark MH, et al. Reduced dermatopontin expression is a molecular link between uterine leiomyomas and keloids. Genes Chromosomes Cancer. 2004;40(3):204–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Leppert PC, Catherino WH, Segars JH. A new hypothesis about the origin of uterine fibroids based on gene expression profiling with microarrays. Am J Obstet Gynecol. 2006;195(2):415–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stewart EA, Nowak RA. New concepts in the treatment of uterine leiomyomas. Obstet Gynecol. 1998;92(4 pt 1):624–627.

    CAS  PubMed  Google Scholar 

  5. Dours-Zimmermann MT, Zimmermann DR. A novel glycosaminoglycan attachment domain identified in two alternative splice variants of human versican. J Biol Chem. 1994;269(52):32992–32998.

    CAS  PubMed  Google Scholar 

  6. LeBaron RG, Zimmermann DR, Ruoslahti E. Hyaluronate binding properties of versican. J Biol Chem. 1992;267(14):10003–10010.

    CAS  PubMed  Google Scholar 

  7. Zimmermann DR, Ruoslahti E. Multiple domains of the large fibroblast proteoglycan, versican. EMBO J. 1989;8(10):2975–2981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Evanko SP, Johnson PY, Braun KR, Underhill CB, Dudhia J, Wight TN. Platelet-derived growth factor stimulates the formation of versican-hyaluronan aggregates and pericellular matrix expansion in arterial smooth muscle cells. Arch Biochem Biophys. 2001;394(1):29–38.

    Article  CAS  PubMed  Google Scholar 

  9. Aspberg A, Miura R, Bourdoulous S, et al. The C-type lectin domains of lecticans, a family of aggregating chondroitin sulfate proteoglycans, bind tenascin-R by protein-protein interactions independent of carbohydrate moiety. Proc Natl Acad Sci USA. 1997;94(19):10116–10121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aspberg A, Adam S, Kostka G, Timpl R, Heinegard D. Fibulin-1 is a ligand for the C-type lectin domains of aggrecan and versican. J Biol Chem. 1999;274(29):20444–20449.

    Article  CAS  PubMed  Google Scholar 

  11. Olin AI, Morgelin M, Sasaki T, Timpl R, Heinegard D, Aspberg A. The proteoglycans aggrecan and Versican form networks with fibulin-2 through their lectin domain binding. J Biol Chem. 2001;276(2):1253–1261.

    Article  CAS  PubMed  Google Scholar 

  12. Isogai Z, Aspberg A, Keene DR, Ono RN, Reinhardt DP, Sakai LY. Versican interacts with fibrillin-1 and links extracellular microfibrils to other connective tissue networks. J Biol Chem. 2002;277(6):4565–4572.

    Article  CAS  PubMed  Google Scholar 

  13. Yamagata M, Yamada KM, Yoneda M, Suzuki S, Kimata K. Chondroitin sulfate proteoglycan (PG-M-like proteoglycan) is involved in the binding of hyaluronic acid to cellular fibronectin. J Biol Chem. 1986;261(29):13526–13535.

    CAS  PubMed  Google Scholar 

  14. Kawashima H, Hirose M, Hirose J, Nagakubo D, Plaas AH, Miyasaka M. Binding of a large chondroitin sulfate/dermatan sulfate proteoglycan, versican, to L-selectin, P-selectin, and CD44. J Biol Chem. 2000;275(45):35448–35456.

    Article  CAS  PubMed  Google Scholar 

  15. Kawashima H, Atarashi K, Hirose M, et al. Oversulfated chondroitin/dermatan sulfates containing GlcAbeta1/IdoAalpha1–3GalNAc(4,6-O-disulfate) interact with L- and P-selectin and chemokines. J Biol Chem. 2002;277(15):12921–12930.

    Article  CAS  PubMed  Google Scholar 

  16. Wu Y, Chen L, Zheng PS, Yang BB. beta 1-Integrin-mediated glioma cell adhesion and free radical-induced apoptosis are regulated by binding to a C-terminal domain of PG-M/versican. J Biol Chem. 2002;277(14):12294–12301.

    Article  CAS  PubMed  Google Scholar 

  17. Bajorath J, Greenfield B, Munro SB, Day AJ, Aruffo A. Identification of CD44 residues important for hyaluronan binding and delineation of the binding site. J Biol Chem. 1998;273(1):338–343.

    Article  CAS  PubMed  Google Scholar 

  18. Wu Y, Sheng W, Chen L, et al. Versican V1 isoform induces neuronal differentiation and promotes neurite outgrowth. Mol Biol Cell. 2004;15(5):2093–2104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zheng PS, Wen J, Ang LC, et al. Versican/PG-M G3 domain promotes tumor growth and angiogenesis. FASEB J. 2004;18(6):754–756.

    Article  CAS  PubMed  Google Scholar 

  20. Ricciardelli C, Quinn DI, Raymond WA, et al. Elevated levels of peritumoral chondroitin sulfate are predictive of poor prognosis in patients treated by radical prostatectomy for early-stage prostate cancer. Cancer Res. 1999;59(10):2324–2328.

    CAS  PubMed  Google Scholar 

  21. Ricciardelli C, Brooks JH, Suwiwat S, et al. Regulation of stromal versican expression by breast cancer cells and importance to relapse-free survival in patients with node-negative primary breast cancer. Clin Cancer Res. 2002;8(4):1054–1060.

    PubMed  Google Scholar 

  22. Naso MF, Zimmermann DR, Iozzo RV. Characterization of the complete genomic structure of the human versican gene and functional analysis of its promoter. J Biol Chem. 1994;269(52):32999–33008.

    CAS  PubMed  Google Scholar 

  23. Wight TN. Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol. 2002;14(5):617–623.

    Article  CAS  PubMed  Google Scholar 

  24. Corps AN, Robinson AH, Movin T, et al. Versican splice variant messenger RNA expression in normal human Achilles tendon and tendinopathies. Rheumatology (Oxford). 2004;43(8):969–972.

    Article  CAS  Google Scholar 

  25. Wu YJ, La Pierre DP, Wu J, Yee AJ, Yang BB. The interaction of versican with its binding partners. Cell Res. 2005;15(7):483–494.

    Article  CAS  PubMed  Google Scholar 

  26. Cattaruzza S, Schiappacassi M, Ljungberg-Rose A, et al. Distribution of PG-M/versican variants in human tissues and de novo expression of isoform V3 upon endothelial cell activation, migration, and neoangiogenesis in vitro. J Biol Chem. 2002;277(49):47626–47635.

    Article  CAS  PubMed  Google Scholar 

  27. Kamiya N, Watanabe H, Habuchi H, et al. Versican/PG-M regulates chondrogenesis as an extracellular matrix molecule crucial for mesenchymal condensation. J Biol Chem. 2006;281(4):2390–2400.

    Article  CAS  PubMed  Google Scholar 

  28. Westergren-Thorsson G, Norman M, Bjornsson S, et al. Differential expressions of mRNA for proteoglycans, collagens and transforming growth factor-beta in the human cervix during pregnancy and involution. Biochim Biophys Acta. 1998;1406(2):203–213.

    Article  CAS  PubMed  Google Scholar 

  29. Ryu KY, Mahendroo M. Regulated changes in crosslinks between versican and hyaluronan may facilitate cervical ripening. Reprod Sci. 2007;14(Suppl 1):68.

    Google Scholar 

  30. Massague J. The transforming growth factor-beta family. Annu Rev Cell Biol. 1990;6:597–641.

    Article  CAS  PubMed  Google Scholar 

  31. He W, Dorn DC, Erdjument-Bromage H, Tempst P, Moore MA, Massague J. Hematopoiesis controlled by distinct TIF1gamma and Smad4 branches of the TGFbeta pathway. Cell. 2006;125(5):929–941.

    Article  CAS  PubMed  Google Scholar 

  32. Lee BS, Nowak RA. Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-beta 3 (TGF beta 3) and altered responses to the antiproliferative effects of TGFbeta. J Clin Endocrinol Metab. 2001;86(2):913–920.

    CAS  PubMed  Google Scholar 

  33. Luo X, Ding L, Xu J, Chegini N. Gene expression profiling of leiomyoma and myometrial smooth muscle cells in response to transforming growth factor-beta. Endocrinology. 2005;146(3):1097–1118.

    Article  CAS  PubMed  Google Scholar 

  34. Stewart EA, Disalvo D, Sharif NA, Sultana N, Margolin SB. Pirfenidone for the treatment of uterine leiomyomas: pilot study data. J Soc Gynecolog Invest. 1999;6:229A.

    Article  Google Scholar 

  35. Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int. 2006;69(2):213–217.

    Article  CAS  PubMed  Google Scholar 

  36. Willis BC, Borok Z. TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol. 2007;293(3):L525–534.

    Article  CAS  PubMed  Google Scholar 

  37. Yata Y, Gotwals P, Koteliansky V, Rockey DC. Dose-dependent inhibition of hepatic fibrosis in mice by a TGF-beta soluble receptor: implications for antifibrotic therapy. Hepatology. 2002;35(5):1022–1030.

    Article  CAS  PubMed  Google Scholar 

  38. Verrecchia F, Mauviel A, Farge D. Transforming growth factor-beta signaling through the Smad proteins: role in systemic sclerosis. Autoimmun Rev. 2006;5(8):563–569.

    Article  CAS  PubMed  Google Scholar 

  39. Bierie B, Moses HL. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 2006;6(7):506–520.

    Article  CAS  PubMed  Google Scholar 

  40. Bonniaud P, Margetts PJ, Ask K, Flanders K, Gauldie J, Kolb M. TGF-beta and Smad3 signaling link inflammation to chronic fibrogenesis. J Immunol. 2005;175(8):5390–5395.

    Article  CAS  PubMed  Google Scholar 

  41. Derynck R, Lindquist PB, Lee A, et al. A new type of transforming growth factor-beta, TGF-beta 3. EMBO J. 1988;7(12):3737–3743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tang XM, Dou Q, Zhao Y, McLean F, Davis J, Chegini N. The expression of transforming growth factor-beta s and TGF-beta receptor mRNA and protein and the effect of TGF-beta s on human myometrial smooth muscle cells in vitro. Mol Hum Reprod. 1997;3(3):233–240.

    Article  CAS  PubMed  Google Scholar 

  43. Arici A, Sozen I. Transforming growth factor-beta3 is expressed at high levels in leiomyoma where it stimulates fibronectin expression and cell proliferation. Fertil Steril. 2000;73(5):1006–1011.

    Article  CAS  PubMed  Google Scholar 

  44. Vollenhoven BJ, Herington AC, Healy DL. Epidermal growth factor and transforming growth factor-beta in uterine fibroids and myometrium. Gynecol Obstet Invest. 1995;40(2):120–124.

    Article  CAS  PubMed  Google Scholar 

  45. Malik M, Catherino WH. Novel method to characterize primary cultures of leiomyoma and myometrium with the use of confirmatory biomarker gene arrays. Fertil Steril. 2007;87(5):1166–1172.

    Article  CAS  PubMed  Google Scholar 

  46. Catherino WH, Prupas C, Tsibris JC, et al. Strategy for elucidating differentially expressed genes in leiomyomata identified by microarray technology. Fertil Steril. 2003;80(2):282–290.

    Article  PubMed  Google Scholar 

  47. Malik M, Webb J, Catherino WH. Retinoic acid treatment of human leiomyoma cells transformed the cell phenotype to one strongly resembling myometrial cells. Clin Endocrinol (Oxf). 2008;69(3):462–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rhim JS. Generation of immortal human prostate cell lines for the study of prostate cancer. Methods Mol Med. 2003;81:69–77.

    Article  CAS  PubMed  Google Scholar 

  49. Levens E, Luo X, Ding L, Williams RS, Chegini N. Fibromodulin is expressed in leiomyoma and myometrium and regulated by gonadotropin-releasing hormone analogue therapy and TGF-beta through Smad and MAPK-mediated signalling. Mol Hum Reprod. 2005;11(7):489–494.

    Article  CAS  PubMed  Google Scholar 

  50. Xu J, Luo X, Chegini N. Differential expression, regulation, and induction of Smads, transforming growth factor-beta signal transduction pathway in leiomyoma, and myometrial smooth muscle cells and alteration by gonadotropin-releasing hormone analog. J Clin Endocrinol Metab. 2003;88(3):1350–1361.

    Article  CAS  PubMed  Google Scholar 

  51. Tsibris JC, Segars J, Coppola D, et al. Insights from gene arrays on the development and growth regulation of uterine leiomyomata. Fertil Steril. 2002;78(1):114–121.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fleisch MC, Maxwell CA, Barcellos-Hoff MH. The pleiotropic roles of transforming growth factor beta in homeostasis and carcinogenesis of endocrine organs. Endocr Relat Cancer. 2006;13:379–400.

    Article  CAS  PubMed  Google Scholar 

  54. Rogers R, Norian J, Malik M, et al. Mechanical homeostasis is altered in uterine leiomyoma. Am J Obstet Gynecol. 2008;198(4):474.e471–411.

    Article  Google Scholar 

  55. Wolanska M, Sobolewski K, Drozdzewicz M, Bankowski E. Extracellular matrix components in uterine leiomyoma and their alteration during the tumour growth. Mol Cell Biochem. 1998;189(1–2):145–152.

    Article  CAS  PubMed  Google Scholar 

  56. Mitropoulou TN, Theocharis AD, Stagiannis KD, Karamanos NK. Identification, quantification and fine structural characterization of glycosaminoglycans from uterine leiomyoma and normal myometrium. Biochimie. 2001;83(6):529–536.

    Article  CAS  PubMed  Google Scholar 

  57. Berto AG, Sampaio LO, Franco CR, Cesar RM Jr, Michelacci YM. A comparative analysis of structure and spatial distribution of decorin in human leiomyoma and normal myometrium. Biochim Biophys Acta. 2003;1619(1):98–112.

    Article  CAS  PubMed  Google Scholar 

  58. Paszek MJ, Zahir N, Johnson KR, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. 2005;8(3):241–254.

    Article  CAS  PubMed  Google Scholar 

  59. Keller R, Davidson LA, Shook DR. How we are shaped: the biomechanics of gastrulation. Differentiation. 2003;71(3):171–205.

    Article  PubMed  Google Scholar 

  60. Engler AJ, Griffin MA, Sen S, Bonnemann CG, Sweeney HL, Discher DE. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol. 2004;166(6):877–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stewart EA, Friedman AJ, Peck K, Nowak RA. Relative overexpression of collagen type I and collagen type III messenger ribonucleic acids by uterine leiomyomas during the proliferative phase of the menstrual cycle. J Clin Endocrinol Metab. 1994;79(3):900–906.

    CAS  PubMed  Google Scholar 

  62. Luo X, Ding L, Chegini N. CCNs, fibulin-1C and S100A4 expression in leiomyoma and myometrium: inverse association with TGF-beta and regulation by TGF-beta in leiomyoma and myometrial smooth muscle cells. Mol Hum Reprod. 2006;12(4):245–256.

    Article  CAS  PubMed  Google Scholar 

  63. Sozen I, Arici A. Interactions of cytokines, growth factors, and the extracellular matrix in the cellular biology of uterine leiomyomata. Fertil Steril. 2002;78(1):1–12.

    Article  PubMed  Google Scholar 

  64. Sozen I, Arici A. Cellular biology of myomas: interaction of sex steroids with cytokines and growth factors. Obstet Gynecol Clin North Am. 2006;33(1):41–58.

    Article  PubMed  Google Scholar 

  65. Wight TN, Merrilees MJ. Proteoglycans in atherosclerosis and restenosis: key roles for versican. Circ Res. 2004;94(4):1158–1167.

    Article  CAS  PubMed  Google Scholar 

  66. Huang R, Merrilees MJ, Braun K, et al. Inhibition of versican synthesis by antisense alters smooth muscle cell phenotype and induces elastic fiber formation in vitro and in neointima after vessel injury. Circ Res. 2006;98(3):370–377.

    Article  CAS  PubMed  Google Scholar 

  67. Lemire JM, Merrilees MJ, Braun KR, Wight TN. Overexpression of the V3 variant of versican alters arterial smooth muscle cell adhesion, migration, and proliferation in vitro. J Cell Physiol. 2002;190(1):38–45.

    Article  CAS  PubMed  Google Scholar 

  68. McCarthy S, Scott G, Majumdar S, et al. Uterine junctional zone: MR study of water content and relaxation properties. Radiology. 1989;171(1):241–243.

    Article  CAS  PubMed  Google Scholar 

  69. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med. 2000;342(18):1350–1358.

    Article  CAS  PubMed  Google Scholar 

  70. Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-beta signal transduction. J CellSci. 2001;114(pt 24):4359–4369.

    CAS  Google Scholar 

  71. Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 2000;19(8):1745–1754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. ten Dijke P, Hill CS. New insights into TGF-beta-Smad signalling. Trends Biochem Sci. 2004;29(5):265–273.

    Article  PubMed  CAS  Google Scholar 

  73. Chegini N, Luo X, Ding L, Ripley D. The expression of Smads and transforming growth factor beta receptors in leiomyoma and myometrium and the effect of gonadotropin releasing hormone analogue therapy. Mol Cell Endocrinol. 2003;209(1–2):9–16.

    Article  CAS  PubMed  Google Scholar 

  74. Arslan AA, Gold LI, Mittal K, et al. Gene expression studies provide clues to the pathogenesis of uterine leiomyoma: new evidence and a systematic review. Hum Reprod. 2005;20(4):852–863.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Catherino MD, PhD.

Additional information

The work was performed at the Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norian, J.M., Malik, M., Parker, C.Y. et al. Transforming Growth Factor β3 Regulates the Versican Variants in the Extracellular Matrix-Rich Uterine Leiomyomas. Reprod. Sci. 16, 1153–1164 (2009). https://doi.org/10.1177/1933719109343310

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719109343310

Key words

Navigation