Skip to main content

Advertisement

Log in

Brain Renin-Angiotensin System: Fetal Epigenetic Programming by Maternal Protein Restriction During Pregnancy

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Objective

Maternal protein malnutrition during pregnancy can lead to significant alterations in the systemic renin-angiotensin system (RAS) in the fetus. All components of the RAS are present in brain and may be altered in many disease states. Importantly, these disorders are reported to be of higher incidence in prenatally malnourished individuals. In the current study, we tested the hypothesis that antenatal maternal low protein diet (MLPD) leads to epigenetic changes and alterations in gene expression of brain RAS of the mouse fetus.

Methods

Mice dams were given control and 50% MLPD during second half of the gestation. We analyzed messenger RNA (mRNA), microRNA (miRNA), promoter DNA methylation, and protein expression of various RAS genes in the fetal offspring.

Results

As a consequence of 50% MLPD, fetal brains showed increased mRNA expression of angiotensinogen and angiotensin converting enzyme-1 (ACE-1), with a decrease in mRNA levels of angiotensin II type-2 (AT2) receptors. In contrast, while angiotensinogen protein expression was unaltered, the protein levels of ACE-1 and AT2 receptor genes were significantly reduced in the fetal brain from the MLPD dams. Our results also demonstrated hypomethylation of the CpG islands in the promoter regions of ACE-1 gene, and upregulation of the miRNAs, mmu-mir-27a and 27b, which regulate ACE-1 mRNA translation. Furthermore, our study showed reduced expression of the miRNA mmu-mir-330, which putatively regulates AT2 translation.

Conclusions

For the developing fetal brain RAS, MLPD leads to significant alterations in the mRNA and protein expression, with changes in DNA methylation and miRNA, key regulators of hypertension in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lavoie JL, Sigmund CD. Minireview: overview of the reninangiotensin system—an endocrine and paracrine system. Endocrinology. 2003;144(6):2179–2183.

    Article  CAS  PubMed  Google Scholar 

  2. Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T, Sraer JD. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest. 2002;109(11):1417–1427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lenkei Z, Palkovits M, Corvol P, Llorens-Cortes C. Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: a functional neuroanatomical review. Front Neuroendocrinol. 1997;18(4):383–439.

    Article  CAS  PubMed  Google Scholar 

  4. Vehaskari VM, Stewart T, Lafont D, Soyez C, Seth D, Manning J. Kidney angiotensin and angiotensin receptor expression in prenatally programmed hypertension. Am J Physiol Renal Physiol. 2004;287(2):F262–F267.

    Article  CAS  PubMed  Google Scholar 

  5. Savaskan E. The role of the brain renin-angiotensin system in neurodegenerative disorders. Curr Alzheimer Res. 2005;2(1): 29–35.

    Article  CAS  PubMed  Google Scholar 

  6. Susser E, Neugebauer R, Hoek HW, et al. Schizophrenia after prenatal famine. Further evidence. Arch Gen Psychiatry. 1996; 53(1):25–31.

    Article  CAS  PubMed  Google Scholar 

  7. McKinley MJ, Albiston AL, Allen AM, et al. The brain renin-angiotensin system: location and physiological roles. Int J Biochem Cell Biol. 2003;35(6):901–918.

    Article  CAS  PubMed  Google Scholar 

  8. Tamura K, Umemura S, Nyui N, et al. Tissue-specific regulation of angiotensinogen gene expression in spontaneously hypertensive rats. Hypertension. 1996;27(6): 1216–1223.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang JQ, Sun HL, Ma YX, Wang DW. Effects of RNA interference targeting angiotensin 1a receptor on the blood pressure and cardiac hypertrophy of rats with 2K1C hypertension [in Chinese]. Zhonghua Yi Xue Za Zhi. 2006;86(16): 1138–1143.

    CAS  PubMed  Google Scholar 

  10. He J, Bian Y, Gao F, et al. RNA interference targeting the ACE gene reduced blood pressure and improved myocardial remodelling in SHRs. Clin Sci (Lond). 2009;116(3):249–255.

    Article  CAS  PubMed  Google Scholar 

  11. He JH, Xiao CS, Li ML, Bian YF. Effects of RNA interference targeting angiotensin-converting enzyme on the blood pressure and myocardial remodeling in spontaneously hypertensive rats. Zhonghua Xin Xue Guan Bing Za Zhi. 2008; 36(3):249–253.

    CAS  PubMed  Google Scholar 

  12. Brawley L, Itoh S, Torrens C, et al. Dietary protein restriction in pregnancy induces hypertension and vascular defects in rat male offspring. Pediatr Res. 2003;54(1):83–90.

    Article  CAS  PubMed  Google Scholar 

  13. Vehaskari VM, Aviles DH, Manning J. Prenatal programming of adult hypertension in the rat. Kidney Int. 2001;59(1): 238–245.

    Article  CAS  PubMed  Google Scholar 

  14. Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD. Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab. 2000;279(1):E83–E87.

    Article  CAS  PubMed  Google Scholar 

  15. Hoek HW, Susser E, Buck KA, Lumey LH, Lin SP, Gorman JM. Schizoid personality disorder after prenatal exposure to famine. Am J Psychiatry. 1996;153(12):1637–1639.

    Article  CAS  PubMed  Google Scholar 

  16. Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R. Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr Res. 2001;49(4):460–467.

    Article  CAS  PubMed  Google Scholar 

  17. Sherman RC, Langley-Evans SC. Antihypertensive treatment in early postnatal life modulates prenatal dietary influences upon blood pressure in the rat. Clin Sci (Lond). 2000;98(3): 269–275.

    Article  CAS  PubMed  Google Scholar 

  18. Bogdarina I, Welham S, King PJ, Burns SP, Clark AJ. Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res. 2007;100(4):520–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Finlay B, Darlington R. Linked regularities in the development and evolution of mammalian brains. Science. 1995; 268(5217):1578–1584.

    Article  CAS  PubMed  Google Scholar 

  20. Clancy B, Kersh B, Hyde J, Darlington RB, Anand KJ, Finlay BL. Web-based method for translating neurodevelopment from laboratory species to humans. Neuroinformatics. 2007;5(1):79–94.

    Article  PubMed  Google Scholar 

  21. Gheorghe CP, Mohan S, Oberg KC, Longo LD. Gene expression patterns in the hypoxic murine placenta: a role in epigenesis? Reprod Sci. 2007;14(3):223–233.

    Article  CAS  PubMed  Google Scholar 

  22. Gheorghe CP, Goyal R, Holweger JD, Longo LD. Placental gene expression responses to maternal protein restriction in the mouse. Placenta. 2009;30(5):411–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goyal R, Galffy A, Field SA, Gheorghe CP, Mittal A, Longo LD. Maternal protein deprivation: changes in systemic renin-angiotensin system of the mouse fetus. Reprod Sci. 2009; 16(9):894–904.

    Article  CAS  PubMed  Google Scholar 

  24. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao Y, Zhang L, Longo LD. PKC-induced ERK1/2 interactions and downstream effectors in ovine cerebral arteries. Am J Physiol Regul Integr Comp Physiol. 2005;289(1): R164–R171.

    Article  CAS  PubMed  Google Scholar 

  26. Frommer M, McDonald LE, Millar DS, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A. 1992;89(5):1827–1831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kumaki Y, Oda M, Okano M. QUMA: quantification tool for methylation analysis. Nucleic Acids Res. 2008;36(Web Server issue):W170–W175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grunau C, Clark SJ, Rosenthal A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res. 2001;29(13):E65–E65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hajkova P, el-Maarri O, Engemann S, Oswald J, Olek A, Walter J. DNA-methylation analysis by the bisulfite-assisted genomic sequencing method. Methods Mol Biol. 2002;200: 143–154.

    CAS  PubMed  Google Scholar 

  30. Liu L, Wylie RC, Hansen NJ, Andrews LG, Tollefsbol TO. Profiling DNA methylation by bisulfite genomic sequencing: problems and solutions. Methods Mol Biol. 2004;287:169–179.

    CAS  PubMed  Google Scholar 

  31. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007;27(1): 91–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vehaskari VM, Woods LL. Prenatal programming of hypertension: lessons from experimental models. J Am Soc Nephrol. 2005;16(9):2545–2556.

    Article  CAS  PubMed  Google Scholar 

  33. Langley SC, Jackson AA. Increased systolic blood pressure in adult rats induced by fetal exposure to maternal low protein diets. Clin Sci (Lond). 1994;86(2):217–222.

    Article  CAS  PubMed  Google Scholar 

  34. Wahlbeck K, Forsen T, Osmond C, Barker DJ, Eriksson JG. Association of schizophrenia with low maternal body mass index, small size at birth, and thinness during childhood. Arch Gen Psychiatry. 2001;58(1):48–52.

    Article  CAS  PubMed  Google Scholar 

  35. Barker DJ. Maternal nutrition, fetal nutrition, and disease in later life. Nutrition. 1997;13(9):807–813.

    Article  CAS  PubMed  Google Scholar 

  36. Bogdarina I, Murphy HC, Burns SP, Clark AJ. Investigation of the role of epigenetic modification of the rat glucokinase gene in fetal programming. Life Sci. 2004;74(11):1407–1415.

    Article  CAS  PubMed  Google Scholar 

  37. Whorwood CB, Stewart PM. Human hypertension caused by mutations in the 11 beta-hydroxysteroid dehydrogenase gene: a molecular analysis of apparent mineralocorticoid excess. J Hypertens Suppl. 1996;14(5):S19–S24.

    CAS  PubMed  Google Scholar 

  38. Tamura K, Umemura S, Sumida Y, et al. Effect of genetic deficiency of angiotensinogen on the renin-angiotensin system. Hypertension. 1998;32(2):223–227.

    Article  CAS  PubMed  Google Scholar 

  39. Yajnik CS, Fall CH, Coyaji KJ, et al. Neonatal anthropometry: the thin-fat Indian baby. The Pune Maternal Nutrition Study. Int J Obes Relat Metab Disord. 2003;27(2):173–180.

    Article  CAS  PubMed  Google Scholar 

  40. Yajnik CS, Fall CH, Vaidya U, et al. Fetal growth and glucose and insulin metabolism in four-year-old Indian children. Diabet Med. 1995;12(4):330–336.

    Article  CAS  PubMed  Google Scholar 

  41. Law CM, Egger P, Dada O, et al. Body size at birth and blood pressure among children in developing countries. Int J Epidemiol. 2001;30(1):52–57.

    Article  CAS  PubMed  Google Scholar 

  42. Willis MS, Buck JS. From Sudan to nebraska: Dinka and Nuer refugee diet dilemmas. J Nutr Educ Behav. 2007;39(5): 273–280.

    Article  PubMed  Google Scholar 

  43. Adam I, Babiker S, Mohmmed AA, Salih MM, Prins MH, Zaki ZM. Low body mass index, anaemia and poor perinatal outcome in a rural hospital in eastern Sudan. J Trop Pediatr. 2008;54(3):202–204.

    Article  PubMed  Google Scholar 

  44. Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br Med Bull. 2001;60:5–20.

    Article  CAS  PubMed  Google Scholar 

  45. Manning J, Vehaskari VM. Low birth weight-associated adult hypertension in the rat. Pediatr Nephrol. 2001;16(5):417–422.

    Article  CAS  PubMed  Google Scholar 

  46. Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261(5):412–417.

    Article  CAS  PubMed  Google Scholar 

  47. Barker DJ. Birth weight and hypertension. Hypertension. 2006; 48(3):357–358.

    Article  CAS  PubMed  Google Scholar 

  48. Barker DJ. In utero programming of cardiovascular disease. Theriogenology. 2000;53(2):555–574.

    Article  CAS  PubMed  Google Scholar 

  49. Steckelings U, Lebrun C, Qadri F, Veltmar A, Unger T. Role of brain angiotensin in cardiovascular regulation. J Cardiovasc Pharmacol. 1992;19(suppl 6):S72–S79.

    Article  CAS  PubMed  Google Scholar 

  50. Nishimura M, Milsted A, Block CH, Brosnihan KB, Ferrario CM. Tissue renin-angiotensin systems in renal hypertension. Hypertension. 1992;20(2):158–167.

    Article  CAS  PubMed  Google Scholar 

  51. Gyurko R, Wielbo D, Phillips MI. Antisense inhibition of AT1 receptor mRNA and angiotensinogen mRNA in the brain of spontaneously hypertensive rats reduces hypertension of neurogenic origin. Regul Pept. 1993;49(2):167–174.

    Article  CAS  PubMed  Google Scholar 

  52. Rodriguez-Dorantes M, Tellez-Ascencio N, Cerbon MA, Lopez M, Cervantes A. DNA methylation: an epigenetic process of medical importance [in Spanish]. Rev Invest Clin. 2004;56(1):56–71.

    CAS  PubMed  Google Scholar 

  53. DeSimone J, Schimenti JC, Duncan CH, Heller P. Is increase of fetal hemoglobin due to erythropoietic stress the result of DNA hypomethylation? Trans Assoc Am Physicians. 1983;96: 155–164.

    Google Scholar 

  54. Kutter C, Svoboda P. miRNA, siRNA, piRNA: knowns of the unknown. RNA Biol. 2008;5(4):181–188.

    Article  CAS  PubMed  Google Scholar 

  55. Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D. MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol. 2003;13(10):807–818.

    Article  CAS  PubMed  Google Scholar 

  56. Zeng Y, Wagner EJ, Cullen BR. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell. 2002;9(6): 1327–1333.

    Article  CAS  PubMed  Google Scholar 

  57. Lin KS, Chan JY, Chan SH. Involvement of AT2 receptors at NRVL in tonic baroreflex suppression by endogenous angiotensins. Am J Physiol. 1997;272(5 pt 2):H2204–H2210.

    CAS  PubMed  Google Scholar 

  58. Timmermans PB, Wong PC, Chiu AT, et al. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev. 1993;45(2):205–251.

    CAS  PubMed  Google Scholar 

  59. Sasamura H, Hein L, Krieger JE, Pratt RE, Kobilka BK, Dzau VJ. Cloning, characterization, and expression of two angiotensin receptor (AT-1) isoforms from the mouse genome. Biochem Biophys Res Commun. 1992;185(1):253–259.

    Article  CAS  PubMed  Google Scholar 

  60. Iwai N, Inagami T. Identification of two subtypes in the rat type I angiotensin II receptor. FEBS Lett. 1992;298(2–3): 257–260.

    Article  CAS  PubMed  Google Scholar 

  61. Konishi H, Kuroda S, Inada Y, Fujisawa Y. Novel subtype of human angiotensin II type 1 receptor: cDNA cloning and expression. Biochem Biophys Res Commun. 1994;199(2): 467–474.

    Article  CAS  PubMed  Google Scholar 

  62. Davisson RL, Oliverio MI, Coffman TM, Sigmund CD. Divergent functions of angiotensin II receptor isoforms in the brain. J Clin Invest. 2000;106(1):103–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence D. Longo MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goyal, R., Goyal, D., Leitzke, A. et al. Brain Renin-Angiotensin System: Fetal Epigenetic Programming by Maternal Protein Restriction During Pregnancy. Reprod. Sci. 17, 227–238 (2010). https://doi.org/10.1177/1933719109351935

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719109351935

Key words

Navigation