Skip to main content
Log in

Effect of Gestational Diabetes on Maternal Artery Function

  • Original Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Endothelial dysfunction has been observed systemically in women with gestational diabetes (GDM). Important cardiovascular adaptations occur during pregnancy, including enhanced endothelium-dependent vasodilation in systemic and uterine arteries, which are necessary to ensure the health of both mother and fetus. The effects of GDM, however, on uterine artery function and the possible mechanisms that mediate endothelial dysfunction remain unknown. The aim of this study was to utilize a mouse model of GDM to investigate (a) effects on uteroplacental flow, (b) endothelial function of uterine and mesenteric arteries, and (c) possible mechanisms of any dysfunction observed. Pregnant mice heterozygous for a leptin receptor mutation (Leprdb/+; He) spontaneously develop GDM and were compared to wild-type (WT) mice at day 18.5 of gestation. Uterine artery flow was assessed using ultrasound biomicroscopy. Uterine and mesenteric artery function was assessed using wire myography. Arterial superoxide production was measured using oxidative fluorescence microphotography. In vivo uteroplacental perfusion was impaired in mice with GDM, indicated by a significant increase in uterine artery resistance index. Maximal endothelium-dependent relaxation to methacholine was significantly impaired in mesenteric arteries from mice with GDM, while sensitivity was significantly reduced in uterine arteries. Both uterine and mesenteric arteries from mice with GDM exhibited a greater dependence on nitric oxide and increased superoxide production compared with those from mice with a healthy pregnancy. A significant source of superoxide in GDM mice was uncoupled nitric oxide synthase. These changes may contribute to the development of some of the fetal and maternal complication associated with GDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2006;29 (suppl 1): s43–s48.

    Google Scholar 

  2. Hanna FW, Peters JR, Harlow J, Jones PW. Gestational diabetes screening and glycaemic management; national survey on behalf of the Association of British Clinical Diabetologists. QJM. 2008;101 (10): 777–784.

    Article  CAS  Google Scholar 

  3. Feig DS, Zinman B, Wang X, Hux JE. Risk of development of diabetes mellitus after diagnosis of gestational diabetes. CMAJ. 2008;179 (3): 229–234.

    Article  Google Scholar 

  4. Moum KR, Holzman GS, Harwell TS, et al. Increasing rate of diabetes in pregnancy among American Indian and white mothers in Montana and North Dakota, 1989–2000. Matern Child Health J. 2004;8 (2): 71–76.

    Article  Google Scholar 

  5. Cheng YW, Chung JH, Kurbisch-Block I, Inturrisi M, Shafer S, Caughey AB. Gestational weight gain and gestational diabetes mellitus: perinatal outcomes. Obstet Gynecol. 2008;112 (5): 1015–1022.

    Article  Google Scholar 

  6. Kwik M, Seeho SK, Smith C, McElduff A, Morris JM. Outcomes of pregnancies affected by impaired glucose tolerance. Diabetes Res Clin Pract. 2007;77 (2): 263–268.

    Article  CAS  Google Scholar 

  7. Clausen TD, Mathiesen ER, Hansen T, et al. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: the role of intrauterine hyperglycemia. Diabetes Care. 2008;31 (2): 340–346.

    Article  Google Scholar 

  8. Knock GA, Mccarthy AL, Lowy C, Poston L. Association of gestational diabetes with abnormal maternal vascular endothelial function. Br J Obstet Gynaecol. 1997;104 (2): 229–234.

    Article  CAS  Google Scholar 

  9. Rosengarten B, Gruessner S, Aldinger C, Kunzel W, Kaps M. Abnormal regulation of maternal cerebral blood flow under conditions of gestational diabetes mellitus. Ultraschall Med. 2004;25 (1): 34–39.

    Article  CAS  Google Scholar 

  10. Knock GA, Poston L. Bradykinin-mediated relaxation of isolated maternal resistance arteries in normal pregnancy and preeclampsia. Am J Obstet Gynecol. 1996;175 (6): 1668–1674.

    Article  CAS  Google Scholar 

  11. Takata M, Nakatsuka M, Kudo T. Differential blood flow in uterine, ophthalmic, and brachial arteries of preeclamptic women. Obstet Gynecol. 2002;100 (5 pt 1): 31–39.

    Google Scholar 

  12. Ishizuka T, Klepcyk P, Liu S, et al. Effects of overexpression of human GLUT4 gene on maternal diabetes and fetal growth in spontaneous gestational diabetic C57BLKS/J Lepr(db/+) mice. Diabetes. 1999;48 (5): 1061–1069.

    Article  CAS  Google Scholar 

  13. Yamashita H, Shao J, Qiao L, Pagliassotti M, Friedman JE. Effect of spontaneous gestational diabetes on fetal and postnatal hepatic insulin resistance in Lepr(db/+) mice. Pediatr Res. 2003;53 (3): 411–418.

    Article  CAS  Google Scholar 

  14. Mu J, Adamson SL. Developmental changes in hemodynamics of uterine artery, utero- and umbilicoplacental, and vitelline circulations in mouse throughout gestation. Am J Physiol Heart Circ Physiol. 2006;291 (3): H1421–H1428.

    Article  CAS  Google Scholar 

  15. Cooke CL, Davidge ST. Pregnancy-induced alterations of vascular function in mouse mesenteric and uterine arteries. Biol Reprod. 2003;68 (3): 1072–1077.

    Article  CAS  Google Scholar 

  16. Sankaralingam S, Xu Y, Sawamura T, Davidge ST. Increased lectin-like low density lipoprotein receptor-1 expression in the maternal vasculature of women with preeclampsia: role for peroxynitrite. Hypertension. 2009;53 (2): 270–277.

    Article  CAS  Google Scholar 

  17. Peshavariya HM, Dusting GJ, Selemidis S. Analysis of dihydroethidium fluorescence for the detection of intracellular and extracellular superoxide production by NADPH oxidase. Free Radic Res. 2007;41 (6): 699–712.

    Article  CAS  Google Scholar 

  18. Kaufmann RC, Amankwah KS, Dunaway G, Maroun L, Arbuthnot J, Roddick JW. An animal model of gestational diabetes. Am J Obstet Gynecol. 1981;141 (5): 479–482.

    Article  CAS  Google Scholar 

  19. Kaufmann P, Mayhew TM, Charnock-Jones DS. Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy. Placenta. 2004;25 (2–3): 114–126.

    Article  CAS  Google Scholar 

  20. Pietryga M, Brazert J, Wender-Oegowske E, Biczysko R, Dubiel M, Gudmundsson S. Abnormal uterine Doppler is related to vasculopathy in pregestational diabetes mellitus. Circulation. 2005;112 (16): 2496–2500.

    Article  Google Scholar 

  21. Pietryga M, Brazert J, Wender-Oegowske E, Dubiel M, Gudmundsson S. Placental Doppler velocimetry in gestational diabetes mellitus. J Perinat Med. 2006;34 (2): 108–110.

    Article  Google Scholar 

  22. Nelson SH, Steinsland OS, Suresh MS, Lee NM. Pregnancy augments nitric oxide-dependent dilator response to acetylcholine in the human uterine artery. Hum Reprod. 1998;13 (5): 1361–1367.

    Article  CAS  Google Scholar 

  23. Ni Y, Meyer M, Osol G. Gestation increases nitric oxide-mediated vasodilation in rat uterine arteries. Am J Obstet Gynecol. 1997;176 (4): 856–864.

    Article  CAS  Google Scholar 

  24. Stanley JL, Ashton N, Taggart MJ, Davidge ST, Baker PN. Uterine artery function in a mouse model of pregnancy complicated by diabetes. Vascul Pharmacol. 2009;50 (1–2): 8–13.

    Article  CAS  Google Scholar 

  25. Kenny LC, Baker PN, Kendall DA, Randall MD, Dunn WR. The role of gap junctions in mediating endothelium-dependent responses to bradykinin in myometrial small arteries isolated from pregnant women. Br J Pharmacol. 2002;136 (8): 1085–1088.

    Article  CAS  Google Scholar 

  26. Ding H, Hashem M, Wiehler WB, et al. Endothelial dysfunction in the streptozotocin-induced diabetic apoE-deficient mouse. Br J Pharmacol. 2005;146 (8): 1110–1118.

    Article  CAS  Google Scholar 

  27. Bitar MS, Wahid S, Mustafa S, Al-Saleh E, Dhaunsi GS, Al-Mulla F. Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes. Eur J Pharmacol. 2005;511 (1): 53–64.

    Article  CAS  Google Scholar 

  28. Hink U, Li H, Mollnau H, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res. 2001;88 (2): E14–E22.

    Article  CAS  Google Scholar 

  29. Dixon LJ, Hughes SM, Rooney K, et al. Increased superoxide production in hypertensive patients with diabetes mellitus: role of nitric oxide synthase. Am J Hyptertens. 2005;18 (6): 839–843.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra T. Davidge PhD.

Additional information

Authors’ Note

SD is an AHFMR Scientist and a Canada Research Chair in Women’s Cardiovascular Health.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanley, J.L., Cheung, C.C., Rueda-Clausen, C.F. et al. Effect of Gestational Diabetes on Maternal Artery Function. Reprod. Sci. 18, 342–352 (2011). https://doi.org/10.1177/1933719110393029

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719110393029

Keywords

Navigation